THEORY OF ORIENTATION TUNING IN VISUAL-CORTEX

被引:792
作者
BENYISHAI, R
BAROR, RL
SOMPOLINSKY, H
机构
[1] HEBREW UNIV JERUSALEM,CTR NEURAL COMPUTAT,IL-91904 JERUSALEM,ISRAEL
[2] AT&T BELL LABS,MURRAY HILL,NJ 07974
关键词
NEURAL NETWORKS; CROSS-CORRELATIONS; SYMMETRY BREAKING;
D O I
10.1073/pnas.92.9.3844
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The role of intrinsic cortical connections in processing sensory input and in generating behavioral output is poorly understood. We have examined this issue in the context of the tuning of neuronal responses in cortex to the orientation of a visual stimulus. We analytically study a simple network model that incorporates both orientation-selective input from the lateral geniculate nucleus and orientation-specific cortical interactions. Depending on the model parameters, the network exhibits orientation selectivity that originates from within the cortex, by a symmetry-breaking mechanism. In this case, the width of the orientation tuning can be sharp even if the lateral geniculate nucleus inputs are only weakly anisotropic. By using our model, several experimental consequences of this cortical mechanism of orientation tuning are derived. The tuning width is relatively independent of the contrast and angular anisotropy of the visual stimulus. The transient population response to changing of the stimulus orientation exhibits a slow ''virtual rotation.'' Neuronal cross-correlations exhibit long time tails, the sign of which depends on the preferred orientations of the cells and the stimulus orientation.
引用
收藏
页码:3844 / 3848
页数:5
相关论文
共 22 条
  • [1] Hubel D.H., Wiesel T.N., J. Physiol. (London), 160, pp. 106-154, (1962)
  • [2] Chapman B., Zahs K.R., Stryker M.P., J. Neurosci., 11, pp. 1347-1358, (1991)
  • [3] Tsumoto T., Eckart W., Creutzfeldt O.D., Exp. Brain Res., 34, pp. 351-363, (1979)
  • [4] Sillito A.M., Kemp J.A., Milson J.A., Berardi N., Brain Res., 194, pp. 517-520, (1980)
  • [5] Orban G.A., Neuronal Operations in the Visual Cortex, (1984)
  • [6] Ahmed B.A., Anderson J.C., Douglas R.J., Martin K.A.C., Nelson J.C., J. Comp. Neurol., 341, pp. 39-49, (1994)
  • [7] Ferster D., Koch D., Trends Neurosci., 10, pp. 487-492, (1987)
  • [8] Martin K.A.C., Q. J. Exp. Physiol., 73, pp. 637-702, (1988)
  • [9] Skottun B.C., Bradley A., Sclar G., Ohzawa I., Freeman R.D., J. Neurophysiol., 57, pp. 773-786, (1987)
  • [10] Fetz E., Toyama K., Smith W., Cerebral Cortex, 9, (1991)