ESTIMATION OF THE DIMENSION OF A NOISY ATTRACTOR

被引:167
作者
SCHOUTEN, JC [1 ]
TAKENS, F [1 ]
VANDENBLEEK, CM [1 ]
机构
[1] UNIV GRONINGEN,DEPT MATH & COMP SCI,9700 AV GRONINGEN,NETHERLANDS
来源
PHYSICAL REVIEW E | 1994年 / 50卷 / 03期
关键词
D O I
10.1103/PhysRevE.50.1851
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A simple method is proposed to estimate the correlation dimension of a noisy chaotic attractor. The method is based on the observation that the noise induces a bias in the observed distances of trajectories, which tend to appear farther apart than they are. Under the assumption of noise being strictly bounded in amplitude, this leads to a rescaling of interpoint distances on the attractor. A correlation integral function is obtained that accounts for this effect of noise. The applicability of the method is illustrated with two examples, viz., the Lorenz attractor with additive noise and experimental time series of pressure fluctuation data measured in gas-solid fluidized beds.
引用
收藏
页码:1851 / 1861
页数:11
相关论文
共 19 条
[1]   USING HIGHER-ORDER CORRELATIONS TO DEFINE AN EMBEDDING WINDOW [J].
ALBANO, AM ;
PASSAMANTE, A ;
FARRELL, ME .
PHYSICA D, 1991, 54 (1-2) :85-97
[2]  
[Anonymous], 1986, NUMERICAL RECIPES
[3]   CHARACTERIZATION OF EXPERIMENTAL (NOISY) STRANGE ATTRACTORS [J].
BENMIZRACHI, A ;
PROCACCIA, I ;
GRASSBERGER, P .
PHYSICAL REVIEW A, 1984, 29 (02) :975-977
[4]   STATE-SPACE RECONSTRUCTION IN THE PRESENCE OF NOISE [J].
CASDAGLI, M ;
EUBANK, S ;
FARMER, JD ;
GIBSON, J .
PHYSICA D-NONLINEAR PHENOMENA, 1991, 51 (1-3) :52-98
[6]   CHARACTERIZATION OF STRANGE ATTRACTORS [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICAL REVIEW LETTERS, 1983, 50 (05) :346-349
[7]   NONLINEAR TIME SEQUENCE ANALYSIS [J].
Grassberger, Peter ;
Schreiber, Thomas ;
Schaffrath, Carsten .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (03) :521-547
[8]  
Grassberger Peter, 1993, Chaos, V3, P127, DOI 10.1063/1.165979
[9]  
HUBNER U, 1990, MEASURES COMPLEXITY, P133
[10]  
OLTMANS H, 1993, UNPUB DELFT U TECHNO