Solid-state nuclear magnetic resonance spectroscopy has been increasingly applied for characterization of supported organometallic complexes. Whereas early studies focused on highly mobile physisorbed species, the development of high-resolution solid-state techniques has extended NMR studies to less mobile chemisorbed complexes. In addition to identification of surface species, solid-state NMR has yielded information concerning mobility, the nature of the bonding to the surface, and even the active sites in catalytic reactions of supported organometallic complexes. When coupled with other characterization methods, NMR has proven to be an effective probe of surface organometallic structure. Solid-state NMR studies of the following systems are reviewed: ligand attached metal complexes, supported metal carbonyls and olefins, supported organoactinides and zeolite encapsulated organometallics.