CLUSTERING CRITERIA FOR DISCRETE-DATA AND LATENT CLASS MODELS

被引:62
作者
CELEUX, G [1 ]
GOVAERT, G [1 ]
机构
[1] UNIV TECHNOL COMPIEGNE,CNRS,URA 817,F-60206 COMPIEGNE,FRANCE
关键词
D O I
10.1007/BF02616237
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a well-known clustering criterion for discrete data, the information criterion, is closely related to the classification maximum likelihood criterion for the latent class model. This relation can be derived from the Bryant-Windham construction. Emphasis is placed on binary clustering criteria which are analyzed under the maximum likelihood approach for different multivariate Bernoulli mixtures. This alternative form of criterion reveals non-apparent aspects of clustering techniques. All the criteria discussed can be optimized with the alternating optimization algorithm. Some illustrative applications are included.
引用
收藏
页码:157 / 176
页数:20
相关论文
共 20 条
[1]   MULTIVARIATE BINARY DISCRIMINATION BY KERNEL METHOD [J].
AITCHISON, J ;
AITKEN, CGG .
BIOMETRIKA, 1976, 63 (03) :413-420
[2]  
BENZECRI JP, 1973, ANAL DONNEES, V1, P207
[3]   LOCAL CONVERGENCE ANALYSIS OF A GROUPED VARIABLE VERSION OF COORDINATE DESCENT [J].
BEZDEK, JC ;
HATHAWAY, RJ ;
HOWARD, RE ;
WILSON, CA ;
WINDHAM, MP .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1987, 54 (03) :471-477
[4]  
BOCK H., 1986, CLASSIFICATION TOOL, P19
[5]  
BOCK HH, 1989, CONCEPTUAL NUMERICAL, P12
[6]  
BOZDOGAN H, 1987, CLASSIFICATION RELAT, P609
[7]   ASYMPTOTIC-BEHAVIOR OF CLASSIFICATION MAXIMUM LIKELIHOOD ESTIMATES [J].
BRYANT, P ;
WILLIAMSON, JA .
BIOMETRIKA, 1978, 65 (02) :273-281
[8]   ON CHARACTERIZING OPTIMIZATION-BASED CLUSTERING METHODS [J].
BRYANT, P .
JOURNAL OF CLASSIFICATION, 1988, 5 (01) :81-84
[9]  
BRYANT PG, 1986, CLASSIFICATION TOOL, P33
[10]  
CELEUX G, 1988, R S A, V36, P43