FINITE-SIZE EFFECT IN 7-DIMENSIONAL SITE PERCOLATION

被引:8
作者
STAUFFER, D
机构
[1] Institute for Theoretical Physics, Cologne University
来源
PHYSICA A | 1994年 / 210卷 / 3-4期
关键词
D O I
10.1016/0378-4371(94)90079-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
On a hypercubic lattice with L7 sites and L up to 21, the site percolation threshold for the spanning of a cluster from top to bottom is found to approach is asymptotic value with a 1/L law, in contrast to the Ising Curie temperature in five dimensions.
引用
收藏
页码:317 / 319
页数:3
相关论文
共 9 条
[1]   SCALING AT THE PERCOLATION-THRESHOLD ABOVE 6 DIMENSIONS [J].
AHARONY, A ;
GEFEN, Y ;
KAPITULNIK, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (04) :L197-L202
[2]   FINITE-SIZE TESTS OF HYPERSCALING [J].
BINDER, K ;
NAUENBERG, M ;
PRIVMAN, V ;
YOUNG, AP .
PHYSICAL REVIEW B, 1985, 31 (03) :1498-1502
[3]   FINITE SIZE EFFECTS IN PHASE-TRANSITIONS [J].
BREZIN, E ;
ZINNJUSTIN, J .
NUCLEAR PHYSICS B, 1985, 257 (06) :867-893
[4]  
Bunde A., 1991, FRACTALS DISORDERED
[5]   PERCOLATION PROCESSES IN D-DIMENSIONS [J].
GAUNT, DS ;
SYKES, MF ;
RUSKIN, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1976, 9 (11) :1899-1911
[6]   SCALING STUDIES OF PERCOLATION PHENOMENA IN SYSTEMS OF DIMENSIONALITY 2 TO 7 - CLUSTER NUMBERS [J].
NAKANISHI, H ;
STANLEY, HE .
PHYSICAL REVIEW B, 1980, 22 (05) :2466-2488
[7]  
RICKWARDT C, ANN PHYSIK
[8]  
SAHIMI M, 1994, APPLICATIONS PERCOLA
[9]  
Stauffer D., 2018, INTRO PERCOLATION TH