NOTE ON EQUIVALENT LAGRANGIANS AND SYMMETRIES

被引:31
作者
SARLET, W
机构
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1983年 / 16卷 / 07期
关键词
D O I
10.1088/0305-4470/16/7/006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:L229 / L233
页数:5
相关论文
共 15 条
[1]   CONSTANTS OF MOTION IN LAGRANGIAN MECHANICS [J].
CRAMPIN, M .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1977, 16 (10) :741-754
[2]   SYMMETRIES AND INVARIANTS OF VOLUME PRESERVING FLOWS [J].
CRAMPIN, M .
PHYSICS LETTERS A, 1980, 79 (2-3) :138-140
[3]   ON A NEW 1ST INTEGRAL OF CERTAIN DYNAMICAL-SYSTEMS AND ITS APPLICATIONS TO RECENT RESULTS CONCERNING 1ST INTEGRALS OF NEWTONIAN SYSTEMS [J].
GONZALEZGASCON, F ;
RODRIGUEZCAMINO, E .
LETTERE AL NUOVO CIMENTO, 1980, 29 (09) :310-314
[4]   DIFFERENTIAL FORMS AND INVARIANT-SETS OF DYNAMICAL-SYSTEMS [J].
GONZALEZGASCON, F ;
RODRIGUEZCAMINO, E .
LETTERE AL NUOVO CIMENTO, 1980, 29 (04) :113-119
[5]  
GONZALEZGASCON F, 1980, LETT NUOVO CIMENTO, V27, P363, DOI 10.1007/BF02817197
[6]   EQUIVALENT LAGRANGIANS - MULTIDIMENSIONAL CASE [J].
HOJMAN, S ;
HARLESTON, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (07) :1414-1419
[7]   NON-CANONICAL SYMMETRIES AND ISOSPECTRAL REPRESENTATIONS OF HAMILTONIAN-SYSTEMS [J].
LUTZKY, M .
PHYSICS LETTERS A, 1982, 87 (06) :274-276
[8]   NEW CLASSES OF CONSERVED QUANTITIES ASSOCIATED WITH NON-NOETHER SYMMETRIES [J].
LUTZKY, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (03) :L87-L91
[9]   NON-INVARIANCE SYMMETRIES AND CONSTANTS OF THE MOTION [J].
LUTZKY, M .
PHYSICS LETTERS A, 1979, 72 (02) :86-88
[10]   SYMMETRY GROUPS AND CONSERVED QUANTITIES FOR HARMONIC-OSCILLATOR [J].
LUTZKY, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1978, 11 (02) :249-258