THE CAYLEY-HILBERT METRIC AND POSITIVE OPERATORS

被引:24
作者
BUSHELL, PJ
机构
关键词
D O I
10.1016/0024-3795(86)90319-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:271 / 280
页数:10
相关论文
共 13 条
[1]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[2]   HILBERTS METRIC AND POSITIVE CONTRACTION MAPPINGS IN A BANACH-SPACE [J].
BUSHELL, PJ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1973, 52 (04) :330-338
[3]   CLASS OF VOLTERRA AND FREDHOLM NONLINEAR INTEGRAL-EQUATIONS [J].
BUSHELL, PJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 79 (MAR) :329-335
[4]  
Bushell PJ., 1974, LINEAR ALGEBRA APPL, V8, P465
[5]  
KAWANO N, 1985, P AM MATH SOC, V93, P73
[6]   THE CONTRACTION MAPPING APPROACH TO THE PERRON-FROBENIUS THEORY - WHY HILBERTS METRIC [J].
KOHLBERG, E ;
PRATT, JW .
MATHEMATICS OF OPERATIONS RESEARCH, 1982, 7 (02) :198-210
[7]  
KRASNOSELSKII MA, 1972, APPROXIMATE SOLUTION, P54
[8]   ON THE EXISTENCE OF POSITIVE SOLUTIONS OF SEMI-LINEAR ELLIPTIC-EQUATIONS [J].
LIONS, PL .
SIAM REVIEW, 1982, 24 (04) :441-467
[9]  
LOEWNER C, MATH Z, V38, P177
[10]  
Marshall A. W., 1979, INEQUALITIES THEORY, V143