THE RAS-ADENYLATE CYCLASE PATHWAY AND CELL-CYCLE CONTROL IN SACCHAROMYCES-CEREVISIAE

被引:110
作者
THEVELEIN, JM
机构
[1] Laboratorium voor Moleculaire Celbiologie, Katholieke Universiteit te Leuven, Leuven-Heverlee, Flanders, B-3001
来源
ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY | 1992年 / 62卷 / 1-2期
关键词
YEAST; CAMP; GROWTH CONTROL; RAS-ONCOGENE; GENERAL GLUCOSE SENSOR; SIGNAL TRANSDUCTION; NUTRIENTS;
D O I
10.1007/BF00584466
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The cell cycle of Saccharomyces cerevisiae contains a decision point in G1 called 'start', which is composed of two specific sites. Nutrient-starved cells arrest at the first site while pheromone-treated cells arrest at the second site. Functioning of the RAS-adenylate cyclase pathway is required for progression over the nutrient-starvation site while overactivation of the pathway renders the cells unable to arrest at this site. However, progression of cycling cells over the nutrient-starvation site does not appear to be triggered by the RAS-adenylate cyclase pathway in response to a specific stimulus, such as an exogenous nutrient. The essential function of the pathway appears to be limited to provision of a basal level of cAMP. cAMP-dependent protein kinase rather than cAMP might be the universal integrator of nutrient availability in yeast. On the other hand stimulation of the pathway in glucose-derepressed yeast cells by rapidly-fermented sugars, such as glucose, is well documented and might play a role in the control of the transition from gluconeogenic growth to fermentative growth. The initial trigger of this signalling pathway is proposed to reside in a 'glucose sensing complex' which has both a function in controlling the influx of glucose into the cell and in activating in addition to the RAS-adenylate cyclase pathway all other glucose-induced regulatory pathways in yeast. Two crucial problems remaining to be solved with respect to cell cycle control are the nature of the connection between the RAS-adenylate cyclase pathway and nitrogen-source induced progression over the nutrient-starvation site of 'start' and second the nature of the downstream processes linking the RAS-adenylate cyclase pathway to Cyclin/CDC28 controlled progression over the pheromone site of 'start'.
引用
收藏
页码:109 / 130
页数:22
相关论文
共 155 条
[1]   METABOLIC IMBALANCE IN A SACCHAROMYCES-CEREVISIAE MUTANT UNABLE TO GROW ON FERMENTABLE HEXOSES [J].
ALONSO, A ;
PASCUAL, C ;
HERRERA, L ;
GANCEDO, JM ;
GANCEDO, C .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1984, 138 (02) :407-411
[2]   ABSENCE OF GLUCOSE-INDUCED CAMP SIGNALING IN THE SACCHAROMYCES-CEREVISIAE MUTANTS CAT1 AND CAT3 WHICH ARE DEFICIENT IN DEREPRESSION OF GLUCOSE-REPRESSIBLE PROTEINS [J].
ARGUELLES, JC ;
MBONYI, K ;
VANAELST, L ;
VANHALEWYN, M ;
JANS, AWH ;
THEVELEIN, JM .
ARCHIVES OF MICROBIOLOGY, 1990, 154 (02) :199-205
[3]   YEAST ALPHA-MATING FACTOR RECEPTOR-LINKED G-PROTEIN SIGNAL TRANSDUCTION SUPPRESSES RAS-DEPENDENT ACTIVITY [J].
ARKINSTALL, SJ ;
PAPASAVVAS, SG ;
PAYTON, MA .
FEBS LETTERS, 1991, 284 (01) :123-128
[4]   SACCHAROMYCES-CARLSBERGENSIS FDP MUTANT AND FUTILE CYCLING OF FRUCTOSE 6-PHOSPHATE [J].
BANUELOS, M ;
FRAENKEL, DG .
MOLECULAR AND CELLULAR BIOLOGY, 1982, 2 (08) :921-929
[5]   RAS GENES [J].
BARBACID, M .
ANNUAL REVIEW OF BIOCHEMISTRY, 1987, 56 :779-827
[6]   CELL-SIZE MODULATION BY CDC25 AND RAS2 GENES IN SACCHAROMYCES-CEREVISIAE [J].
BARONI, MD ;
MARTEGANI, E ;
MONTI, P ;
ALBERGHINA, L .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (06) :2715-2723
[7]   INDUCTION OF A HEAT-SHOCK-TYPE RESPONSE IN SACCHAROMYCES-CEREVISIAE FOLLOWING GLUCOSE LIMITATION [J].
BATAILLE, N ;
REGNACQ, M ;
BOUCHERIE, H .
YEAST, 1991, 7 (04) :367-378
[8]   NEW MUTATIONS IN THE YEAST SACCHAROMYCES-CEREVISIAE AFFECTING COMPLETION OF START [J].
BEDARD, DP ;
JOHNSTON, GC ;
SINGER, RA .
CURRENT GENETICS, 1981, 4 (03) :205-214
[9]  
BELAZZI T, 1991, EMBO J, V10, P585, DOI 10.1002/j.1460-2075.1991.tb07985.x
[10]   STUDIES ON THE MECHANISM OF THE GLUCOSE-INDUCED CAMP SIGNAL IN GLYCOLYSIS AND GLUCOSE REPRESSION MUTANTS OF THE YEAST SACCHAROMYCES-CEREVISIAE [J].
BEULLENS, M ;
MBONYI, K ;
GEERTS, L ;
GLADINES, D ;
DETREMERIE, K ;
JANS, AWH ;
THEVELEIN, JM .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1988, 172 (01) :227-231