ALMOST INVARIANT-MANIFOLDS FOR DIVERGENCE-FREE FIELDS

被引:33
作者
DEWAR, RL
HUDSON, SR
PRICE, PF
机构
[1] AUSTRALIAN NATL UNIV,RES SCH INFORMAT SCI ENGN,COMP SCI LAB,CANBERRA,ACT 0200,AUSTRALIA
[2] AUSTRALIAN NATL UNIV,RES SCH PHYS SCI & ENGN,PLASMA RES LAB,CANBERRA,ACT 0200,AUSTRALIA
关键词
D O I
10.1016/0375-9601(94)00707-V
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that toroidal surfaces that extremize a properly weighted surface integral of the squared normal component of a solenoidal three-vector field capture the local invariant dynamics, in that a field line that is anywhere tangential to the surface must be confined to the surface everywhere. In addition to an elementary three-vector calculus derivation, which relies on a curvilinear toroidal coordinate system, a coordinate-free geometric approach applicable to hypersurfaces (codimension-one submanifolds) of manifolds of arbitrary dimension is sketched.
引用
收藏
页码:49 / 56
页数:8
相关论文
共 14 条
[1]   EVALUATION OF THE STRUCTURE OF ERGODIC FIELDS [J].
BOOZER, AH .
PHYSICS OF FLUIDS, 1983, 26 (05) :1288-1291
[2]   PLASMA EQUILIBRIUM WITH RATIONAL MAGNETIC-SURFACES [J].
BOOZER, AH .
PHYSICS OF FLUIDS, 1981, 24 (11) :1999-2003
[3]   NONCANONICAL HAMILTONIAN-MECHANICS AND ITS APPLICATION TO MAGNETIC-FIELD LINE FLOW [J].
CARY, JR ;
LITTLEJOHN, RG .
ANNALS OF PHYSICS, 1983, 151 (01) :1-34
[4]   FLUX-MINIMIZING CURVES FOR REVERSIBLE AREA-PRESERVING MAPS [J].
DEWAR, RL ;
MEISS, JD .
PHYSICA D, 1992, 57 (3-4) :476-506
[5]  
Dhaeseleer WD, 1991, FLUX COORDINATES MAG
[6]  
Goldstein H., 1980, CLASSICAL MECH, V2nd ed
[7]   OPTIMIZED FOURIER REPRESENTATIONS FOR 3-DIMENSIONAL MAGNETIC-SURFACES [J].
HIRSHMAN, SP ;
MEIER, HK .
PHYSICS OF FLUIDS, 1985, 28 (05) :1387-1391
[8]  
LICHTENBERG AJ, 1992, APPLIED MATH SCI, V38
[9]   DIFFUSING THROUGH SPECTERS - RIDGE CURVES, GHOST CIRCLES AND A PARTITION OF PHASE-SPACE [J].
MACKAY, RS ;
MULDOON, MR .
PHYSICS LETTERS A, 1993, 178 (3-4) :245-250
[10]  
Meiss JD, 1991, P MINICONFERENCE CHA, P97