MINIMUM DISTANCES IN NONTRIVIAL STRING TARGET SPACES

被引:16
作者
ASPINWALL, PS
机构
[1] School of Natural Sciences, Institute for Advanced Study, Princeton
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(94)90098-1
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The idea of minimum distance, familiar from R <-> 1/R duality when the string target space is a circle, is analyzed for less trivial geometries. The particular geometry studied is that of a blown-up quotient singularity within a Calabi-Yau space and mirror symmetry is used to perform the analysis. It is found that zero distances can appear but that in many cases this requires other distances within the same target space to be infinite. In other cases zero distances can occur without compensating infinite distances.
引用
收藏
页码:78 / 96
页数:19
相关论文
共 25 条
[1]   CALABI-YAU MODULI SPACE, MIRROR MANIFOLDS AND SPACETIME TOPOLOGY CHANGE IN STRING THEORY [J].
ASPINWALL, PS ;
GREENE, BR ;
MORRISON, DR .
NUCLEAR PHYSICS B, 1994, 416 (02) :414-480
[2]   MULTIPLE MIRROR MANIFOLDS AND TOPOLOGY CHANGE IN STRING THEORY [J].
ASPINWALL, PS ;
GREENE, BR ;
MORRISON, DR .
PHYSICS LETTERS B, 1993, 303 (3-4) :249-259
[3]  
ASPINWALL PS, 1994, IN PRESS ESSAYS MIRR, V2
[4]  
Batyrev V. V., 1994, J ALGEBRAIC GEOM, V3, P493
[5]   VARIATIONS OF THE MIXED HODGE STRUCTURE OF AFFINE HYPERSURFACES IN ALGEBRAIC TORI [J].
BATYREV, VV .
DUKE MATHEMATICAL JOURNAL, 1993, 69 (02) :349-409
[6]  
BERGLUND P, 1993, CERNTH686593 HEPTH93
[7]  
BERSHADSKY M, 1993, HUTP93A025 HEPTH9309
[8]  
BORISOV L, 1993, ALGGEOM931001 PREPR
[9]   STRINGS IN BACKGROUND FIELDS [J].
CALLAN, CG ;
FRIEDAN, D ;
MARTINEC, EJ ;
PERRY, MJ .
NUCLEAR PHYSICS B, 1985, 262 (04) :593-609
[10]   A PAIR OF CALABI-YAU MANIFOLDS AS AN EXACTLY SOLUBLE SUPERCONFORMAL THEORY [J].
CANDELAS, P ;
DELAOSSA, XC ;
GREEN, PS ;
PARKES, L .
NUCLEAR PHYSICS B, 1991, 359 (01) :21-74