TAYLOR EXPANSIONS FOR SINGULAR KERNELS IN THE BOUNDARY ELEMENT METHOD

被引:84
作者
ALIABADI, MH [1 ]
HALL, WS [1 ]
PHEMISTER, TG [1 ]
机构
[1] NEI PARSONS LTD,DEPT MATH SERV,NEWCASTLE UPON TYNE,ENGLAND
关键词
D O I
10.1002/nme.1620211208
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
引用
收藏
页码:2221 / 2236
页数:16
相关论文
共 13 条
[1]  
ALIABADI MH, 1981, THESIS CNAA LONDON
[2]  
Brebbia C. A., 1984, J APPL MECH, DOI DOI 10.1115/1.3169016
[3]  
Cruse T. A., 1974, Computers and Structures, V4, P741, DOI 10.1016/0045-7949(74)90042-X
[4]  
DAVIS PJ, 1975, METHODS NUMERICAL IN
[5]   NUMERICAL-SOLUTION OF 2-DIMENSIONAL POTENTIAL PROBLEMS BY AN IMPROVED BOUNDARY INTEGRAL-EQUATION METHOD [J].
FAIRWEATHER, G ;
RIZZO, FJ ;
SHIPPY, DJ ;
WU, YS .
JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 31 (01) :96-112
[6]   CALCULATION OF CAUCHY PRINCIPAL VALUES IN INTEGRAL-EQUATIONS FOR BOUNDARY-VALUE PROBLEMS OF PLANE AND 3-DIMENSIONAL THEORY OF ELASTICITY [J].
HEISE, U .
JOURNAL OF ELASTICITY, 1975, 5 (02) :99-110
[7]  
Hesss JL, 1964, J SHIP RES, V8, P22
[8]   ISOPARAMETRIC, FINITE-ELEMENT, VARIATIONAL SOLUTION OF INTEGRAL-EQUATIONS FOR 3-DIMENSIONAL FIELDS [J].
JENG, G ;
WEXLER, A .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1977, 11 (09) :1455-1471
[9]  
KELLOGG OD, 1954, F POTENTIAL THEORY
[10]  
Krylov VI., 2006, APPROXIMATE CALCULAT