BOUNDARY INTEGRAL-EQUATIONS IN TIME-HARMONIC ACOUSTIC SCATTERING

被引:70
作者
KRESS, R
机构
[1] Institut für Numerische und Angewandte Mathematik, Universität Göttingen, 3400 Göttingen
关键词
D O I
10.1016/0895-7177(91)90068-I
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We first review the basic existence results for exterior boundary value problems for the Helmholtz equation via boundary integral equations. Then we describe the numerical solution of these integral equations in two dimensions for a smooth boundary curve using trigonometric polynomials on an equidistant mesh. We provide a comparison of the Nystrom method, the collocation method and the Galerkin method. In each case we take proper care of the logarithmic singularity of the kernel of the integral equation by choosing appropriate quadrature rules. In the case of analytic data the convergence order is exponential. The Nystrom method is the most efficient since it requires the least computational effort. Finally, we consider boundary curves with corners. Here, we use a graded mesh based on the idea of transforming the nonsmooth case to a smooth periodic case via an appropriate substitution. Then, the application of Nystrom's method again yields rapid convergence.
引用
收藏
页码:229 / 243
页数:15
相关论文
共 20 条
[1]  
ANSELONE PM, 1971, COLLECTIVELY COMPACT
[2]  
Brakhage H., 1965, ARCH MATH, V16, P325, DOI [10.1007/BF01220037, DOI 10.1007/BF01220037]
[3]  
Colton D., 1983, INTEGRAL EQUATION ME
[4]  
Garrick I. E., 1952, NBS APPL MATH SER, V18, P137
[5]  
Grisvard P., 1985, ELLIPTIC PROBLEMS NO, V24
[6]  
Hackbusch W., 1985, SPRINGER SERIES COMP, V4
[7]  
Iri M, 1970, KOKYUROKU RES I MATH, V91, P82
[10]  
Kress R, 1989, LINEAR INTEGRAL EQUA