STABILITY OF INTRINSIC LOCALIZED MODES IN ANHARMONIC 1-D LATTICES

被引:26
作者
CHUBYKALO, OA
KOVALEV, AS
USATENKO, OV
机构
[1] KHARKOV AM GORKII STATE UNIV,KHARKOV,UKRAINE
[2] KHARKOV LOW TEMP PHYS & ENGN INST,KHARKOV 310164,UKRAINE
关键词
D O I
10.1016/0375-9601(93)90739-M
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The stability of symmetric and anti-symmetric localized modes in the case of ''hard'' anharmonicity is considered. In the high-frequency limit the infinite chain is replaced by a ring of four particles. The solutions of this system and their stability are found analytically and their relation to intrinsic localized modes are considered. The applicability of results and the relation between localized modes and solitons are also discussed.
引用
收藏
页码:129 / 137
页数:9
相关论文
共 14 条
[1]   INTRINSIC LOCALIZED MODES IN A MONATOMIC LATTICE WITH WEAKLY ANHARMONIC NEAREST-NEIGHBOR FORCE-CONSTANTS [J].
BICKHAM, SR ;
SIEVERS, AJ .
PHYSICAL REVIEW B, 1991, 43 (03) :2339-2346
[2]  
BURLAKOV VM, 1991, ZH EKSP TEOR FIZ+, V99, P1526
[3]   COMPUTER-SIMULATION OF INTRINSIC LOCALIZED MODES IN ONE-DIMENSIONAL AND 2-DIMENSIONAL ANHARMONIC LATTICES [J].
BURLAKOV, VM ;
KISELEV, SA ;
PYRKOV, VN .
PHYSICAL REVIEW B, 1990, 42 (08) :4921-4927
[4]  
ELEONSKY VM, 1982, METHODS QUALITATIVE, P73
[5]  
KOSEVICH AM, 1974, ZH EKSP TEOR FIZ+, V67, P1793
[6]  
KOSEVICH AM, 1990, DYNAMICS CRYSTAL LAT
[7]  
KOSEVICH AM, 1989, INTRO NONLINEAR PHYS
[8]  
KOSEVICH YA, IN PRESS
[9]  
Kovalyshina A. N., 1988, Progress v selektsii ozimoi pshenitsy kak faktor intensifikatsii proizvodstva zerna., P20
[10]  
LANDAU LD, 1976, THEORETICAL MECHANIC