ON THE RELATION BETWEEN SCATTERING-AMPLITUDES AND FINITE-SIZE MASS CORRECTIONS IN QFT

被引:69
作者
KLASSEN, TR
MELZER, E
机构
[1] UNIV CHICAGO,DEPT PHYS,CHICAGO,IL 60637
[2] UNIV MIAMI,DEPT PHYS,CORAL GABLES,FL 33124
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(91)90566-G
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
If a stable particle in a quantum field theory (QFT) is enclosed in a box, its mass changes from its infinite-volume value due to the finite-size dependence of its self-energy (because virtual particles can "travel around a finite-size world"). Generalizing results of Luscher, we show how to express the leading large-volume corrections to the mass of any particle below threshold in terms of the scattering amplitudes of the theory. The mass shift decreases exponentially with the extent of the box, the decay rates depending on the "composite structure" of the particle in question. The proof is given to all orders of perturbation theory for an (almost) arbitrary purely massive QFT in any dimension. We also discuss the size of the error term with which the mass shift can be calculated, showing in particular that the error is substantially smaller in 1 + 1 dimensions. Our results are useful, for instance, in the study of (1 + 1)-dimensional massive QFTs. As a first application we compare our predictions for the finite-size mass shifts in several integrable scattering theories with numerical results, most of which we obtain using the "truncated conformal space approach".
引用
收藏
页码:329 / 388
页数:60
相关论文
共 66 条
[1]   FRACTIONAL SUPERSYMMETRIES IN PERTURBED COSET CFTS AND INTEGRABLE SOLITON THEORY [J].
AHN, C ;
BERNARD, D ;
LECLAIR, A .
NUCLEAR PHYSICS B, 1990, 346 (2-3) :409-439
[2]  
BALAVIN AA, 1984, NUCL PHYS B, V241, P333
[3]   VOLUME DEPENDENCE OF THE MASS GAP FOR THE O(3) NONLINEAR SIGMA-MODEL - A MONTE-CARLO STUDY [J].
BENDER, I ;
WETZEL, W ;
BERG, B .
NUCLEAR PHYSICS B, 1986, 269 (02) :389-409
[4]   SCATTERING-AMPLITUDES OF GROSS-NEVEU AND NON-LINEAR SIGMA-MODELS IN HIGHER ORDERS OF 1-N-EXPANSION [J].
BERG, B ;
KAROWSKI, M ;
KURAK, V ;
WEISZ, P .
PHYSICS LETTERS B, 1978, 76 (04) :502-504
[5]   EXTENDED TODA FIELD-THEORY AND EXACT S-MATRICES [J].
BRADEN, HW ;
CORRIGAN, E ;
DOREY, PE ;
SASAKI, R .
PHYSICS LETTERS B, 1989, 227 (3-4) :411-416
[6]  
BRADEN HW, 1989, UDCPT8953 DURH PREPR
[7]   CONFORMAL-INVARIANCE AND UNIVERSALITY IN FINITE-SIZE SCALING [J].
CARDY, JL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (07) :L385-L387
[8]   S-MATRIX OF THE YANG-LEE EDGE SINGULARITY IN 2 DIMENSIONS [J].
CARDY, JL ;
MUSSARDO, G .
PHYSICS LETTERS B, 1989, 225 (03) :275-278
[9]   LOW SCATTERING EQUATION FOR THE CHARGED AND NEUTRAL SCALAR THEORIES [J].
CASTILLEJO, L ;
DALITZ, RH ;
DYSON, FJ .
PHYSICAL REVIEW, 1956, 101 (01) :453-458
[10]   INTEGRABLE SYSTEMS AWAY FROM CRITICALITY - THE TODA FIELD-THEORY AND S-MATRIX OF THE TRICRITICAL ISING-MODEL [J].
CHRISTE, P ;
MUSSARDO, G .
NUCLEAR PHYSICS B, 1990, 330 (2-3) :465-487