MANIFESTATION OF WAVE CHAOS IN PSEUDOINTEGRABLE MICROWAVE RESONATORS

被引:48
作者
HAAKE, F
LENZ, G
SEBA, P
STEIN, J
STOCKMANN, HJ
ZYCZKOWSKI, K
机构
[1] RUHR UNIV BOCHUM, INST MATH, W-4630 BOCHUM, GERMANY
[2] UNIV MARBURG, FACHBEREICH PHYS, W-3550 MARBURG, GERMANY
[3] JAGIELLONIAN UNIV, INST PHYS, PL-30059 KRAKOW, POLAND
来源
PHYSICAL REVIEW A | 1991年 / 44卷 / 10期
关键词
D O I
10.1103/PhysRevA.44.R6161
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyze the distribution of eigenfrequencies of microwave resonators which correspond to pseudointegrable billiards. The statistical properties of the measured spectra are explained by means of a model of additive random matrices.
引用
收藏
页码:R6161 / R6164
页数:4
相关论文
共 16 条
[1]  
ALBEVERIO S, IN PRESS J STAT PHYS
[2]   DIABOLICAL POINTS IN THE SPECTRA OF TRIANGLES [J].
BERRY, MV ;
WILKINSON, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1984, 392 (1802) :15-43
[3]   LEVEL DENSITY FLUCTUATIONS AND RANDOM MATRIX-THEORY [J].
BOHIGAS, O ;
GIANNONI, MJ .
ANNALS OF PHYSICS, 1975, 89 (02) :393-422
[4]   ABSENCE OF SCALING IN ADDITIVE RANDOM MATRICES [J].
CHEON, T .
PHYSICAL REVIEW A, 1990, 42 (10) :6227-6229
[5]  
CHEON T, 1990, HUPH020913TC HOS U R
[6]   ANALYTICALLY SOLVABLE DYNAMICAL-SYSTEMS WHICH ARE NOT INTEGRABLE [J].
ECKHARDT, B ;
FORD, J ;
VIVALDI, F .
PHYSICA D, 1984, 13 (03) :339-356
[7]  
Haake F., 2018, QUANTUM SIGNATURES C, V54, DOI DOI 10.1007/978-3-642-05428-0
[8]  
Jones DS., 1964, THEORY ELECTROMAGNET
[9]   RELIABILITY OF SMALL MATRICES FOR LARGE SPECTRA WITH NONUNIVERSAL FLUCTUATIONS [J].
LENZ, G ;
HAAKE, F .
PHYSICAL REVIEW LETTERS, 1991, 67 (01) :1-4
[10]  
LENZ G, IN PRESS PHYS REV A