ADAPTIVE SUBDIVISION ALGORITHMS FOR A SET OF BEZIER TRIANGLES

被引:3
作者
FILIP, DJ
机构
关键词
D O I
10.1016/0010-4485(86)90153-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
引用
收藏
页码:74 / 78
页数:5
相关论文
共 11 条
[1]  
BARSKY BA, UNPUB ADAPTIVE SUBDI
[2]   SUBDIVIDING MULTIVARIATE SPLINES [J].
BOHM, W .
COMPUTER-AIDED DESIGN, 1983, 15 (06) :345-352
[3]  
BOHM W, 1983, COMPUT AIDED DES, V15, P260
[4]  
DECATELJAU P, COURBES SURFACES POL
[5]   A CONSTRUCTION FOR VISUAL C-1 CONTINUITY OF POLYNOMIAL SURFACE PATCHES [J].
FARIN, G .
COMPUTER GRAPHICS AND IMAGE PROCESSING, 1982, 20 (03) :272-282
[6]  
FARIN G, 1983, SURFACES COMPUTER AI, P43
[7]  
FILIP D, 1985, THESIS U CALIFORNIA
[8]   SUBDIVISION ALGORITHMS FOR BEZIER TRIANGLES [J].
GOLDMAN, RN .
COMPUTER-AIDED DESIGN, 1983, 15 (03) :159-166
[9]   THEORETICAL DEVELOPMENT FOR THE COMPUTER-GENERATION AND DISPLAY OF PIECEWISE POLYNOMIAL SURFACES [J].
LANE, JM ;
RIESENFELD, RF .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1980, 2 (01) :35-46
[10]  
Petersen C. S., 1984, Computer-Aided Geometric Design, V1, P61, DOI 10.1016/0167-8396(84)90004-9