INDUCED QCD WITHOUT LOCAL CONFINEMENT

被引:3
作者
DOBROLIUBOV, MI
KOGAN, II
SEMENOFF, GW
WEISS, N
机构
[1] RUSSIAN ACAD SCI, INST NUCL RES, MOSCOW 117312, RUSSIA
[2] PRINCETON UNIV, DEPT PHYS, PRINCETON, NJ 08544 USA
[3] MOSCOW THEORET & EXPTL PHYS INST, MOSCOW 117259, RUSSIA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
D O I
10.1016/0370-2693(93)90398-2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We examine some properties of the filled Wilson loop observables in the Kazakov-Migdal model of induced QCD. We show that they have a natural interpretation in a modification of the original model in which the Z(N) gauge symmetry is broken explicitly by a Wilson kinetic term for the gauge fields. We argue that there are two large N limits of this theory, one leads to ordinary Wilson lattice gauge theory coupled to a dynamical scalar field and the other leads to a version of the Kazakov-Migdal model in which the large N solution found by Migdal can still be used. We discuss the properties of the string theory which emerges.
引用
收藏
页码:283 / 290
页数:8
相关论文
共 26 条
[1]  
BOULATOV DV, 1992, NBIHE9262 PREPR
[2]  
BOULATOV DV, 1992, NBIHE9278 PREPR
[3]  
CASELLE M, 1992, DFTT3892 TUR PREPR
[4]  
GOCKSCH A, 1992, PHASE DIAGRAM N EQUA
[5]  
GROSS DJ, 1992, PUTPT1335 PRINC PREP
[6]   DIFFERENTIAL OPERATORS ON A SEMISIMPLE LIE ALGEBRA [J].
HARISHCHANDRA .
AMERICAN JOURNAL OF MATHEMATICS, 1957, 79 (01) :87-120
[7]   PLANAR APPROXIMATION .2. [J].
ITZYKSON, C ;
ZUBER, JB .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (03) :411-421
[8]  
Kazakov V. A., 1983, Soviet Physics - JETP, V58, P1096
[9]   U(INFINITY) LATTICE GAUGE-THEORY AS A FREE-LATTICE STRING THEORY [J].
KAZAKOV, VA .
PHYSICS LETTERS B, 1983, 128 (05) :316-320
[10]  
KAZAKOV VA, 1992, LPTENS9215PUPT1322 P