A MATHEMATICAL-MODEL OF DYNAMICS OF NONISOTHERMAL PHASE-SEPARATION

被引:79
作者
ALT, HW
PAWLOW, I
机构
[1] Inst. f. Angewandte Mathematik, Universität Bonn, W-5300 Bonn 1
关键词
D O I
10.1016/0167-2789(92)90078-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A mathematical model of thermally activated phase separation in binary systems is proposed. The construction is based on the Landau-Ginzburg theory of phase transitions and non-equilibrium thermodynamics. The proposed system of differential equations represents an extension of the Cahn-Hilliard model to the non-isothermal situation. The model is shown to be consistent with the first principles of thermodynamics. The stability of stationary solutions is considered, and for the one-dimensional case numerical results are presented.
引用
收藏
页码:389 / 416
页数:28
相关论文
共 26 条
[1]  
Alt H. W., 1992, ADV MATH SCI APPL, V1, P319
[2]  
ALT HW, 1990, INT S NUM M, V95, P1
[3]  
ALT HW, 1991, SFB256 U BONN PREPR
[4]  
[Anonymous], 1983, PHASE TRANSIT CRIT P
[5]   ON SPINODAL DECOMPOSITION [J].
CAHN, JW .
ACTA METALLURGICA, 1961, 9 (09) :795-801
[6]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[7]   SPINODAL DECOMPOSITION - REPRISE [J].
CAHN, JW ;
HILLIARD, JE .
ACTA METALLURGICA, 1971, 19 (02) :151-+
[8]  
CAHN JW, 1968, T METALL SOC AIME, V242, P166
[9]   STRUCTURED PHASE-TRANSITIONS ON A FINITE INTERVAL [J].
CARR, J ;
GURTIN, ME ;
SLEMROD, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1984, 86 (04) :317-351
[10]   BROWNIAN MOTION IN SPINODAL DECOMPOSITION [J].
COOK, HE .
ACTA METALLURGICA, 1970, 18 (03) :297-+