CONVERGENCE-RATES FOR TRIGONOMETRIC AND POLYNOMIAL-TRIGONOMETRIC REGRESSION-ESTIMATORS

被引:11
作者
EUBANK, RL
SPECKMAN, P
机构
[1] TEXAS A&M UNIV SYST,DEPT STAT,COLLEGE STN,TX 77843
[2] UNIV MISSOURI,DEPT STAT,COLUMBIA,MO 65201
基金
美国国家科学基金会;
关键词
GUARANTEED RATES; MEAN SQUARED ERROR; NONPARAMETRIC REGRESSION; ORTHOGONAL SERIES;
D O I
10.1016/0167-7152(91)90128-E
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Upper bounds are derived for the rates of convergence for trigonometric series regression estimators of an unknown, smooth regression function. The resulting rates depend on the regression function satisfying certain periodic boundary conditions that may not hold in practice. To overcome such difficulties alternative estimators are proposed which are obtained by regression on trigonometric functions and low-order polynomials. These estimators are shown to always be capable of obtaining the optimal rates of convergence over a particular smoothness class of functions, irregardless of whether or not the regression function is periodic.
引用
收藏
页码:119 / 124
页数:6
相关论文
共 9 条
[1]   APPROXIMATION OF LEAST-SQUARES REGRESSION ON NESTED SUBSPACES [J].
COX, DD .
ANNALS OF STATISTICS, 1988, 16 (02) :713-732
[2]  
Eubank R.L., 1988, SPLINE SMOOTHING NON
[3]  
EUBANK RL, 1990, BIOMETRIKA, V77, P1
[4]   TRIGONOMETRIC SERIES REGRESSION-ESTIMATORS WITH AN APPLICATION TO PARTIALLY LINEAR-MODELS [J].
EUBANK, RL ;
HART, JD ;
SPECKMAN, P .
JOURNAL OF MULTIVARIATE ANALYSIS, 1990, 32 (01) :70-83
[6]   ON TRIGONOMETRIC SERIES ESTIMATES OF DENSITIES [J].
HALL, P .
ANNALS OF STATISTICS, 1981, 9 (03) :683-685
[7]  
Muller HG, 1988, NONPARAMETRIC REGRES
[9]   ON SYSTEM-IDENTIFICATION BY NONPARAMETRIC FUNCTION FITTING [J].
RUTKOWSKI, L .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1982, 27 (01) :225-227