HYDROLYSIS OF INTACT AND CYS-PHE-CLEAVED HUMAN ATRIAL-NATRIURETIC-PEPTIDE INVITRO BY HUMAN TISSUE KALLIKREIN

被引:8
作者
VANNESTE, Y [1 ]
MICHEL, A [1 ]
DESCHODTLANCKMAN, M [1 ]
机构
[1] UNIV ETAT MONS,B-7000 MONS,BELGIUM
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 1991年 / 196卷 / 02期
关键词
D O I
10.1111/j.1432-1033.1991.tb15815.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Atrial natriuretic peptide (ANP) is a 28-amino-acid hormone involved in the regulation of fluid balance. In circulation, the proteolytic inactivation of ANP has been demonstrated to involve both membrane metallo-endopeptidase and an aprotonin-sensitive activity, probably corresponding to kallikrein [Vanneste, Y., Pauwels, S., Lambotte, L., Michel, A., Dimaline, R. & Deschodt-Lanckman, M. (1990) Biochem. J. 269, 801-806]. In the present study, we focused on the aprotinin-sensitive pathway of ANP metabolism. In order to identify the cleavage sites recognized by kallikrein within the sequence of the hormone, tissue kallikrein was purified to homogeneity from human urine and the degradation of human ANP by the enzyme preparation was studied. Our results demonstrate that both intact and Cys7-Phe8-cleaved ANP, the initial metabolite produced in circulation by the metallo-endopeptidase, are substrates in vitro for purified tissue kallikrein. However, the Cys-Phe-cleaved peptide was degraded approximately fourfold faster than the intact hormone by the purified enzyme. The first degradation step of ANP by tissue kallikrein involves two cleavages occurring at the bonds Arg3-Arg4 and Gly16-Ala17, generating an inactive, open-ring metabolite. Incubation of ANP for a longer period with the enzyme led to the generation of several additional degradation fragments. Ten peaks were separated by HPLC and characterized by amino acid analysis. The results allowed the identification of a total of eight peptide bonds susceptible to hydrolysis by tissue kallikrein in the sequence of ANP: Arg3-Arg4, Ser5-Ser6, Cys7-Phe8, Arg11-Met12, Gly16-Ala17, Gly20-Leu21, Ser25-Phe26 and Arg27-Tyr28. These results indicate that the aprotinin-sensitive activity involved in the metabolism of ANP in circulation could correspond to tissue kallikrein. However, clear identification of ANP as a novel physiological substrate of the enzyme will need further investigation.
引用
收藏
页码:281 / 286
页数:6
相关论文
共 34 条
[1]  
ACKERMANN U, 1986, CLIN CHEM, V32, P241
[2]   COMPARATIVE SPECIFICITY OF PORCINE PANCREATIC KALLIKREIN AND BOVINE PANCREATIC TRYPSIN - IMPORTANCE OF INTERACTIONS N-TERMINAL TO THE SCISSIBLE BOND [J].
BIZZOZERO, SA ;
DUTLER, H .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1987, 256 (02) :662-676
[3]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[4]   ISOLATION OF TISSUE KALLIKREIN IN RAT SPLEEN BY MONOCLONAL ANTIBODY-AFFINITY CHROMATOGRAPHY [J].
CHAO, J ;
CHAO, L ;
MARGOLIUS, HS .
BIOCHIMICA ET BIOPHYSICA ACTA, 1984, 801 (02) :244-249
[5]   TISSUE KALLIKREIN IN RAT-BRAIN AND PITUITARY - REGIONAL DISTRIBUTION AND ESTROGEN INDUCTION IN THE ANTERIOR-PITUITARY [J].
CHAO, J ;
CHAO, L ;
SWAIN, CC ;
TSAI, J ;
MARGOLIUS, HS .
ENDOCRINOLOGY, 1987, 120 (02) :475-482
[6]   STUDIES ON RAT RENAL CORTICAL CELL KALLIKREIN .2. IDENTIFICATION OF KALLIKREIN AS AN ECTO-ENZYME [J].
CHAO, J ;
MARGOLIUS, HS .
BIOCHIMICA ET BIOPHYSICA ACTA, 1979, 570 (02) :330-340
[7]   DEGRADATION OF HUMAN ATRIAL NATRIURETIC PEPTIDE BY HUMAN-BRAIN MEMBRANES [J].
DESCHODTLANCKMAN, M ;
VANNESTE, Y ;
MICHAUX, F .
NEUROCHEMISTRY INTERNATIONAL, 1988, 12 (03) :367-373
[8]   INVITRO AND INVIVO DEGRADATION OF HUMAN GASTRIN BY ENDOPEPTIDASE 24.11 [J].
DESCHODTLANCKMAN, M ;
PAUWELS, S ;
NAJDOVSKI, T ;
DIMALINE, R ;
DOCKRAY, GJ .
GASTROENTEROLOGY, 1988, 94 (03) :712-721
[9]   ISOLATION OF AN ENZYMATICALLY ACTIVE GLANDULAR KALLIKREIN FROM HUMAN-PLASMA BY IMMUNOAFFINITY CHROMATOGRAPHY [J].
GEIGER, R ;
CLAUSNITZER, B ;
FINK, E ;
FRITZ, H .
HOPPE-SEYLERS ZEITSCHRIFT FUR PHYSIOLOGISCHE CHEMIE, 1980, 361 (12) :1795-1803
[10]  
KOEHN JA, 1987, J BIOL CHEM, V262, P11623