NONLINEAR DISPERSION AND COMPACT STRUCTURES

被引:269
作者
ROSENAU, P [1 ]
机构
[1] LOS ALAMOS NATL LAB,CTR NONLINEAR STUDIES,LOS ALAMOS,NM 87545
关键词
D O I
10.1103/PhysRevLett.73.1737
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Relaxing the distinguished ordering underlying the derivation of soliton supporting equations leads to new equations endowed with nonlinear dispersion crucial for the formation and coexistence of compactons, solitons with a compact support, and conventional solitons. Vibrations of-the anharmonic mass-spring chain lead to a new Boussinesq equation admitting compactons and compact breathers. The model equation u(t) + [delta u + 3 gamma u(2)/2 + u(1-omega)(u(omega)u(x))(x)](x) + nu u(txx) = 0 (omega, nu, delta, gamma const) admits compactons and for 2 omega = nu gamma = 1 has a bi-Hamiltonian structure. The infinite sequence of commuting flows generates an integrable, compacton's supporting variant of the Harry Dym equation.
引用
收藏
页码:1737 / 1741
页数:5
相关论文
共 13 条
[1]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[2]  
Hyman J. D., UNPUB
[3]   EXISTENCE AND NONEXISTENCE OF SOLITARY WAVE SOLUTIONS TO HIGHER-ORDER MODEL EVOLUTION-EQUATIONS [J].
KICHENASSAMY, S ;
OLVER, PJ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (05) :1141-1166
[4]  
OLVER PJ, 1986, APPLICATIONS LIE GRO
[5]  
PETVIASHVILI VI, 1978, SOV PHYS DOKL, V231, P17
[6]   QUASI-CONTINUOUS SPATIAL MOTION OF A MASS SPRING CHAIN [J].
ROSENAU, P .
PHYSICA D, 1987, 27 (1-2) :224-234
[7]   EXTENSION OF LANDAU-GINZBURG FREE-ENERGY FUNCTIONALS TO HIGH-GRADIENT DOMAINS [J].
ROSENAU, P .
PHYSICAL REVIEW A, 1989, 39 (12) :6614-6617
[8]   DYNAMICS OF DENSE LATTICES [J].
ROSENAU, P .
PHYSICAL REVIEW B, 1987, 36 (11) :5868-5876
[9]   COMPACTONS - SOLITONS WITH FINITE WAVELENGTH [J].
ROSENAU, P ;
HYMAN, JM .
PHYSICAL REVIEW LETTERS, 1993, 70 (05) :564-567
[10]   DYNAMICS OF DENSE DISCRETE-SYSTEMS - HIGH-ORDER EFFECTS [J].
ROSENAU, P .
PROGRESS OF THEORETICAL PHYSICS, 1988, 79 (05) :1028-1042