ON THE EXISTENCE OF MULTIPLE GEODESICS IN STATIC SPACE-TIMES

被引:64
作者
BENCI, V [1 ]
FORTUNATO, D [1 ]
GIANNONI, F [1 ]
机构
[1] UNIV BARI,DIPARTMENTO MATEMAT,I-70124 BARI,ITALY
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 1991年 / 8卷 / 01期
关键词
LORENTZ METRICS; GEODESICS; CRITICAL POINT THEORY;
D O I
10.1016/S0294-1449(16)30278-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the problem of the existence of geodesics in static space-times which are a particular case of Lorentz manifolds. We prove multiplicity results about geodesics joining two given events and about periodic trajectories having a prescribed period.
引用
收藏
页码:79 / 102
页数:24
相关论文
共 27 条
[1]  
Al'ber SI., 1970, RUSS MATH SURV, V25, P51, DOI [10.1070/RM1970v025n04ABEH001261, DOI 10.1070/RM1970V025N04ABEH001261]
[2]  
AVEZ A, 1963, ANN I FOURIER, V132, P105, DOI DOI 10.5802/AIF.144
[3]   ABSTRACT CRITICAL-POINT THEOREMS AND APPLICATIONS TO SOME NON-LINEAR PROBLEMS WITH STRONG RESONANCE AT INFINITY [J].
BARTOLO, P ;
BENCI, V ;
FORTUNATO, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (09) :981-1012
[4]   EXISTENCE OF GEODESICS FOR THE LORENTZ METRIC OF A STATIONARY GRAVITATIONAL-FIELD [J].
BENCI, V ;
FORTUNATO, D .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1990, 7 (01) :27-35
[5]   PERIODIC-SOLUTIONS OF LAGRANGIAN SYSTEMS ON A COMPACT MANIFOLD [J].
BENCI, V .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 63 (02) :135-161
[6]  
BENCI V, 1989, EXISTENCE INFINITELY
[7]  
BENCI V, EXISTENCE GEODESICS
[8]  
BENCI V, 1988, IN PRESS JUN P VAR P
[9]   ON P-CONVEX SETS AND GEODESICS [J].
CANINO, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 75 (01) :118-157
[10]  
Ellis G. F. R., 1973, LARGE SCALE STRUCTUR