FILTERING AND DECONVOLUTION BY THE WAVELET TRANSFORM

被引:80
作者
STARCK, JL
BIJAOUI, A
机构
[1] Cisi-Ingenierie, 06560 Valbonne
[2] Observatoire de la Côte d'Azur, F-06304 Nice Cedex 4
[3] Observatoire de la Côte d'Azur, F-06304 Nice Cedex 4
关键词
MULTIRESOLUTION ANALYSIS; WAVELET; IMAGE PROCESSING; IMAGE RESTORATION; FILTERING; DECONVOLUTION;
D O I
10.1016/0165-1684(94)90211-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The wavelet transform gives information in both spatial and frequency domains and is a very useful tool for describing the hierarchical structures. A new approach for filtering based on the wavelet transform is presented in this paper, and several algorithms are proposed. A criterion of quality, which takes into account the resolution, is used to compare these algorithms. We show that deconvolution can be done using filtered wavelet coefficients. By computing the wavelet from the point spread function, we find a new transform algorithm and a reconstruction method related to it.
引用
收藏
页码:195 / 211
页数:17
相关论文
共 29 条
[1]  
Antonini, Barlaud, Mathieu, Image coding using vector quantization in the wavelet transform domain, Proc. Internat. Conf. Acoust. Speech Signal Process., (1990)
[2]  
Bijaoui, Algorithmes de la transformation en ondelettes, Application à l'imagerie astronomique, Proc. Ondelettes et Paquets d'Ondes, (1991)
[3]  
Chui, An introduction to wavelets, Wavelet Analysis and its Application, (1992)
[4]  
Cohen, Daubechies, Feauveau, Biorthogonal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, 45, pp. 485-560, (1992)
[5]  
Cornwell, Image restoration, Proc. NATO Advanced Study Institute on Diffraction-Limited Imaging with Very Large Telescopes, pp. 273-292, (1988)
[6]  
Daubechies, Orthogonal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, 41, pp. 909-996, (1988)
[7]  
Feauveau, Analyse Multiresolution par Ondelettes non Othogonales et Bancs de Filtres Numériques, Thése de doctorat de l'université, (1990)
[8]  
Frieden, Image enhancement and restoration, Topics in Applied Physics, 6, pp. 177-249, (1975)
[9]  
Grossmann, Morlet, Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM Journal on Mathematical Analysis, 15, pp. 723-736, (1984)
[10]  
Holschneider, Kronland-Martinet, Morlet, Tchamitchian, The à trous Algorithm, CPT-88/P.2215, pp. 1-22, (1988)