FOUNDATIONS OF SEMI-DIFFERENTIAL INVARIANTS

被引:53
作者
MOONS, T
PAUWELS, EJ
VANGOOL, LJ
OOSTERLINCK, A
机构
[1] Katholieke Universiteit Leuven, ESAT-MI2, Leuven, 3001
关键词
D O I
10.1007/BF01421487
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper elaborates the theoretical foundations of a semi-differential framework for invariance. Semi-differential invariants combine coordinates and their derivatives with respect to some contour parameter at several points of the image contour, thus allowing for an optimal trade-off between identification of points and the calculation of derivatives. A systematic way of generating complete and independent sets of such invariants is presented. It is also shown that invariance under reparametrisation can be cast in the same framework. The theory is illustrated by a complete analysis of 2D affine transformations. In a companion paper (Pauwels et al. 1995) these affine semi-differential invariants are implemented in the computer program FORM (Flat Object Recognition Method) for the recognition of planar contours under pseudo-perspective projection.
引用
收藏
页码:25 / 47
页数:23
相关论文
共 30 条
[1]   APPLICATION OF AFFINE-INVARIANT FOURIER DESCRIPTORS TO RECOGNITION OF 3-D OBJECTS [J].
ARBTER, K ;
SNYDER, WE ;
BURKHARDT, H ;
HIRZINGER, G .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1990, 12 (07) :640-647
[2]  
BRILL MH, 1992, GEOMETRIC IVNARIANCE, V9, P193
[3]  
BRUCKSTEIN AM, 1990, DIFFERENTIAL INVARIA
[4]  
CHESTER CR, 1971, TECHNIQUES PARTIAL D
[5]  
COSTA M, 1989, SPIE, V1095, P515
[6]  
Cyganski D., 1987, Proceedings of the First International Conference on Computer Vision (Cat. No.87CH2465-3), P496
[7]  
FORSYTH DA, 1990, P BMVC 90
[8]  
Guggenheimer H.W., 1977, DIFFERENTIAL GEOMETR
[9]  
KANATANI, 1990, GROUP THEORETICAL ME
[10]  
KEMPENAERS P, 1991, VISUAL FORM, P323