A-INFINITY-CONDITION FOR THE JACOBIAN OF A QUASI-CONFORMAL MAPPING

被引:6
作者
HEINONEN, J [1 ]
KOSKELA, P [1 ]
机构
[1] UNIV JYVASKYLA,DEPT MATH,SF-40100 JYVASKYLA,FINLAND
关键词
QUASI-CONFORMAL MAPPING; A-INFINITY WEIGHT; JOHN DOMAIN;
D O I
10.2307/2159892
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the Jacobian J(f) of a quasi-conformal mapping f:B(n) --> D is an A(infinity)-weight in B(n) if and only if D is a John domain. A similar question concerning J(f-1) is also studied.
引用
收藏
页码:535 / 543
页数:9
相关论文
共 22 条
[1]   INJECTIVITY, THE BMO NORM AND THE UNIVERSAL TEICHMULLER SPACE [J].
ASTALA, K ;
GEHRING, FW .
JOURNAL D ANALYSE MATHEMATIQUE, 1986, 46 :16-57
[2]  
ASTALA K, 1985, MICH MATH J, V32, P99
[3]   QUASI-CONFORMAL MAPPINGS AND GLOBAL INTEGRABILITY OF THE DERIVATIVE [J].
ASTALA, K ;
KOSKELA, P .
JOURNAL D ANALYSE MATHEMATIQUE, 1991, 57 :203-220
[4]  
COIFMAN RR, 1974, STUD MATH, V51, P241
[5]  
FERNANDEZ JL, 1989, J ANAL MATH, V52, P117
[6]  
Garcia-Cuerva J., 1985, WEIGHTED NORM INEQUA
[7]   QUASIHYPERBOLIC GEODESICS IN JOHN DOMAINS [J].
GEHRING, FW ;
HAG, K ;
MARTIO, O .
MATHEMATICA SCANDINAVICA, 1989, 65 (01) :75-92
[8]   LP-INTEGRABILITY OF PARTIAL DERIVATIVES OF A QUASICONFORMAL MAPPING [J].
GEHRING, FW .
ACTA MATHEMATICA, 1973, 130 (3-4) :265-277
[9]   QUASIEXTREMAL DISTANCE DOMAINS AND EXTENSION OF QUASI-CONFORMAL MAPPINGS [J].
GEHRING, FW ;
MARTIO, O .
JOURNAL D ANALYSE MATHEMATIQUE, 1985, 45 :181-206
[10]  
Heinonen J., 1989, REV MAT IBEROAM, V5, P97