A MILNOR CONDITION FOR NONATOMIC LIPSCHITZ GAMES AND ITS APPLICATIONS

被引:5
作者
MONDERER, D [1 ]
机构
[1] UNIV CALIF LOS ANGELES,DEPT MATH,LOS ANGELES,CA 90024
关键词
D O I
10.1287/moor.15.4.714
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
引用
收藏
页码:714 / 723
页数:10
相关论文
共 14 条
[1]   VALUE THEORY WITHOUT EFFICIENCY [J].
DUBEY, P ;
NEYMAN, A ;
WEBER, RJ .
MATHEMATICS OF OPERATIONS RESEARCH, 1981, 6 (01) :122-128
[2]  
DUNFORD N, 1967, LINEAR OPERATORS 1
[3]   VALUES OF NON-ATOMIC VECTOR MEASURE GAMES - ARE THEY LINEAR-COMBINATIONS OF THE MEASURES [J].
HART, S ;
NEYMAN, A .
JOURNAL OF MATHEMATICAL ECONOMICS, 1988, 17 (01) :31-40
[4]  
Lindenstrauss J., 1979, CLASSICAL BANACH SPA, VII
[5]  
MILNOR JW, 1952, RM916 RAND CORP RES
[6]   PRICES FOR HOMOGENEOUS COST-FUNCTIONS [J].
MIRMAN, LJ ;
NEYMAN, A .
JOURNAL OF MATHEMATICAL ECONOMICS, 1983, 12 (03) :257-273
[7]  
MONDERER, 1988, SHAPLEY VALUE
[8]   MEASURE-BASED VALUES OF NONATOMIC GAMES [J].
MONDERER, D .
MATHEMATICS OF OPERATIONS RESEARCH, 1986, 11 (02) :321-335
[9]   VALUES AND SEMIVALUES ON SUBSPACES OF FINITE GAMES [J].
MONDERER, D .
INTERNATIONAL JOURNAL OF GAME THEORY, 1988, 17 (04) :301-310
[10]  
Neyman A., 1976, Mathematics of Operations Research, V1, P246, DOI 10.1287/moor.1.3.246