FAILURE PREDICTION OF FIBER-REINFORCED MATERIALS WITH NEURAL NETWORKS

被引:10
作者
LABOSSIERE, P [1 ]
TURKKAN, N [1 ]
机构
[1] UNIV MONCTON,ECOLE GENIE,MONCTON E1A 3E9,NB,CANADA
关键词
D O I
10.1177/073168449301201202
中图分类号
TB33 [复合材料];
学科分类号
摘要
Neural networks can be used to predict failure of anisotropic materials under any loading condition, provided that sufficient experimental data were initially available for the system to ''learn'' the rules. An example failure envelope for a typical fibre-reinforced material is obtained using this method.
引用
收藏
页码:1270 / 1280
页数:11
相关论文
共 9 条
[1]  
BrainMaker, 1989, BRAINMAKER
[2]   ON THE DETERMINATION OF THE STRENGTH PARAMETERS IN THE TENSOR POLYNOMIAL FAILURE CRITERION [J].
LABOSSIERE, P ;
NEALE, KW .
JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN, 1987, 22 (03) :155-161
[3]   ON THE OPTIMIZATION OF THE TENSOR POLYNOMIAL FAILURE THEORY WITH A GENETIC ALGORITHM [J].
LABOSSIERE, P ;
TURKKAN, N .
TRANSACTIONS OF THE CANADIAN SOCIETY FOR MECHANICAL ENGINEERING, 1992, 16 (3-4) :251-265
[4]  
LABOSSIERE P, 1991, J STRAIN ANAL, V266, P461
[5]  
Pao YH, 1989, ADAPTIVE PATTERN REC
[6]   BIAXIAL STRENGTH OF PAPERBOARD PREDICTED BY HILL-TYPE THEORIES [J].
ROWLANDS, RE ;
GUNDERSON, DF ;
SUHLING, JC ;
JOHNSON, MW .
JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN, 1985, 20 (02) :121-127
[7]   LEARNING REPRESENTATIONS BY BACK-PROPAGATING ERRORS [J].
RUMELHART, DE ;
HINTON, GE ;
WILLIAMS, RJ .
NATURE, 1986, 323 (6088) :533-536
[8]   TENSORIAL STRENGTH ANALYSIS OF PAPERBOARD [J].
SUHLING, JC ;
ROWLANDS, RE ;
JOHNSON, MW ;
GUNDERSON, DE .
EXPERIMENTAL MECHANICS, 1985, 25 (01) :75-84
[9]   GENERAL THEORY OF STRENGTH FOR ANISOTROPIC MATERIALS [J].
TSAI, SW ;
WU, EM .
JOURNAL OF COMPOSITE MATERIALS, 1971, 5 (JAN) :58-+