REGULATION OF TIGHT JUNCTION PERMEABILITY BY CALCIUM MEDIATORS AND CELL CYTOSKELETON IN RABBIT TRACHEAL EPITHELIUM

被引:54
作者
BHAT, M
TOLEDOVELASQUEZ, D
WANG, L
MALANGA, CJ
MA, JKH
ROJANASAKUL, Y
机构
[1] W VIRGINIA UNIV,SCH PHARM,MORGANTOWN,WV 26506
[2] RHONE POULENC RORER,CENT RES,FT WASHINGTON,PA 19034
关键词
TRACHEAL EPITHELIUM; PARACELLULAR; TIGHT JUNCTION PERMEABILITY; CALCIUM; CYTOSKELETON;
D O I
10.1023/A:1018906504944
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The present study investigates the mechanisms controlling tight junction permeability of the tracheal epithelium, with an emphasis on the regulatory role of intra- and extracellular calcium as well as the cell cytoskeleton. The tracheas were isolated from rabbits and their junctional permeability barrier was investigated in vitro by means of transepithelial electrical resistance measurements and flux measurements of the radiolabeled paracellular tracer, C-14-mannitol. The effects of intra- and extracellular calcium were studied using the calcium ionophore A 23187 and EGTA, and that of the cytoskeleton was investigated using cytochalasin B. Intracellular calcium of the tracheal epithelium was monitored microfluorometrically using the specific calcium indicator, Fura-2 AM (acetoxymethyl ester). The results indicate that the tight junction permeability of the trachea was significantly increased upon treatment with all three of the test compounds, as evidenced by a substantial decrease in transepithelial electrical resistance and an increase in transepithelial flux of C-14-mannitol. The effects of EGTA and cytochalasin B on the tight junction permeability are fully reversible upon removal of the compounds from the bathing media. On the other hand, tissues treated with the calcium ionophore demonstrate a partial or no recovery in membrane permeability, depending on the intracellular calcium levels. Moderate and transient increases in intracellular calcium caused a partial reversibility of the membrane resistance, while high and sustained intracellular calcium levels induce a complete irreversibility of the membrane resistance. These results suggest that high extracellular calcium levels and low intracellular calcium levels are required for the normal maintenance of the junctional permeability in the tracheal epithelium. Studies using cytochalasin B indicate that there is also a close relationship between the tight junctions and the organization of actin microfilaments. Alterations of these structures as well as cellular calcium levels can result in a substantial change in transepithelial permeability. Therefore compounds that affect tight junction permeability may exert their action through the calcium and cytoskeleton mechanisms.
引用
收藏
页码:991 / 997
页数:7
相关论文
共 30 条