SPARSEST CUTS AND BOTTLENECKS IN GRAPHS

被引:55
作者
MATULA, DW [1 ]
SHAHROKHI, F [1 ]
机构
[1] UNIV N TEXAS,DEPT COMP SCI,DENTON,TX 76203
关键词
D O I
10.1016/0166-218X(90)90133-W
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of determining a sparsest cut in a graph is characterized and its computation shown to be NP-hard. A class of sparsest cuts, termed bottlenecks, is characterized by a dual relation to a particular polynomial time computable multicommodity flow problem. Efficient computational techniques for determining bottlenecks in a broad class of instances are presented. © 1990.
引用
收藏
页码:113 / 123
页数:11
相关论文
共 13 条
  • [1] BIANCHINI RP, 1987, IEEE T COMPUT, V36, P396, DOI 10.1109/TC.1987.1676922
  • [2] BISWAS J, 1986, P IEEE FALL JOINT CO, P629
  • [3] Ford L., 1962, FLOWS NETWORKS, V71, P1059, DOI 10.2307/2311955
  • [4] Frederickson G. N., 1983, 24th Annual Symposium on Foundations of Computer Science, P242, DOI 10.1109/SFCS.1983.69
  • [5] Garey M.R., 1979, COMPUTERS INTRACTABI, V174
  • [6] Gerla M., 1974, P NAT TEL C SAN DIEG, P1074
  • [7] AN EFFICIENT ALGORITHM FOR FINDING MULTICOMMODITY FLOWS IN PLANAR NETWORKS
    MATSUMOTO, K
    NISHIZEKI, T
    SAITO, N
    [J]. SIAM JOURNAL ON COMPUTING, 1985, 14 (02) : 289 - 302
  • [8] Matula D. W., 1985, GRAPH THEORY ITS APP, P543
  • [9] MATULA DW, 1986, CLASSIFICATION TOOL, P289
  • [10] MATULA DW, 1983, NUMERICAL TAXONOMY, V1, P156