ADAPTED SOLUTION OF A BACKWARD STOCHASTIC DIFFERENTIAL-EQUATION

被引:1726
作者
PARDOUX, E
PENG, SG
机构
[1] SHANDONG UNIV,INST MATH,JINAN,PEOPLES R CHINA
[2] UNIV AIX MARSEILLE 1,URA 225,F-13331 MARSEILLE 3,FRANCE
[3] INST NATL RECH INFORMAT & AUTOMAT,F-78153 LE CHESNAY,FRANCE
[4] FUDAN UNIV,INST MATH,SHANGHAI,PEOPLES R CHINA
关键词
adapted process; Backward stochastic differential equation;
D O I
10.1016/0167-6911(90)90082-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let Wt; t ε{lunate} [0, 1] be a standard k-dimensional Weiner process defined on a probability space (Ω, F, P), and let Ft denote its natural filtration. Given a F1 measurable d-dimensional random vector X, we look for an adapted pair of processes {x(t), y(t); t ε{lunate} [0, 1]} with values in Rd and Rd×k respectively, which solves an equation of the form: x(t) + ∫ t 1f(s, x(s), y(s)) ds + ∫ t 1 [g(s, x(s)) + y(s)] dWs = X. A linearized version of that equation appears in stochastic control theory as the equation satisfied by the adjoint process. We also generalize our results to the following equation: x(t) + ∫ t 1f(s, x(s), y(s)) ds + ∫ t 1 g(s, x(s)) + y(s)) dWs = X under rather restrictive assumptions on g. © 1990.
引用
收藏
页码:55 / 61
页数:7
相关论文
共 7 条
[1]  
BENSOUSSAN A, 1982, LECTURE NOTES MATH, V972
[2]  
Bismut J. M., 1973, MEM AM MATH SOC, V176
[3]  
Ethier S.N., 2005, MARKOV PROCESSES CHA, Vsecond
[4]  
Karatzas I., 1988, BROWNIAN MOTION STOC, DOI 10.1007/978-1-4612-0949-2
[5]   NECESSARY CONDITIONS FOR CONTINUOUS PARAMETER STOCHASTIC OPTIMIZATION PROBLEMS [J].
KUSHNER, HJ .
SIAM JOURNAL ON CONTROL, 1972, 10 (03) :550-&
[6]  
PROTTER P, IN PRESS STOCHASTIC
[7]  
[No title captured]