SIMPLE POINTS, TOPOLOGICAL NUMBERS AND GEODESIC NEIGHBORHOODS IN CUBIC GRIDS

被引:165
作者
BERTRAND, G
机构
[1] ESIEE, Cité Descartes, 93162 Noisy-Le-Grand Cedex
关键词
SIMPLE POINTS; 3; DIMENSIONS; DIGITAL TOPOLOGY; THINNING ALGORITHMS; GEODESIC NEIGHBORHOODS; CUBIC GRIDS;
D O I
10.1016/0167-8655(94)90032-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce the notion of geodesic neighborhood in order to define some topological numbers associated with a point in a three-dimensional cubic grid. For {6, 26} and {6, 18} connectivities, these numbers lead to a characterization of simple points which consists in only two local conditions.
引用
收藏
页码:1003 / 1011
页数:9
相关论文
共 16 条
[1]   A NEW CHARACTERIZATION OF 3-DIMENSIONAL SIMPLE POINTS [J].
BERTRAND, G ;
MALANDAIN, G .
PATTERN RECOGNITION LETTERS, 1994, 15 (02) :169-175
[2]  
BERTRAND G, 1994, UNPUB BOOLEAN CHARAC
[3]  
BERTRAND G, 1992, CHARACTERIZATIONS 3
[4]  
BERTRAND G, 1992, 2ND EUR C COMP VIS, P710
[5]   A DIGITAL FUNDAMENTAL GROUP [J].
KONG, TY .
COMPUTERS & GRAPHICS, 1989, 13 (02) :159-166
[6]   DIGITAL-TOPOLOGY - INTRODUCTION AND SURVEY [J].
KONG, TY ;
ROSENFELD, A .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1989, 48 (03) :357-393
[7]   TOPOLOGICAL SEGMENTATION OF DISCRETE SURFACES [J].
MALANDAIN, G ;
BERTRAND, G ;
AYACHE, N .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1993, 10 (02) :183-197
[8]  
MALANDAIN G, 1992, 11TH INT C PATT REC, V3, P232
[9]  
Morgenthaler D, 1981, TR1005 U MAR COMP SC, P20742
[10]  
MORGENTHALER DG, 1980, TR980 U MAR COMP SCI