SINGULAR VALUE DECOMPOSITION AND MOORE-PENROSE INVERSE OF BORDERED MATRICES

被引:34
作者
HARTWIG, RE [1 ]
机构
[1] N CAROLINA STATE UNIV,DEPT MATH,RALEIGH,NC 27607
关键词
D O I
10.1137/0131003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The singular value decomposition of a matrix is used to derive systematically the Moore-Penrose inverse for a matrix bordered by a row and a column, in addition to the Moore-Penrose inverse for the associated principal Schur complements.
引用
收藏
页码:31 / 41
页数:11
相关论文
共 12 条
[1]  
BHIMASANKARAM P, 1971, SANKHYA SER A, V33, P311
[2]   SOME APPLICATIONS OF THE PSEUDOINVERSE OF A MATRIX [J].
GREVILLE, TNE .
SIAM REVIEW, 1960, 2 (01) :15-22
[3]  
HARTWIG RE, TO BE PUBLISHED
[4]  
Meyer C.D., 1972, LINEAR ALGEBRA APPL, V5, P375
[5]  
NOBLE B, 1969, APPLIED LINEAR ALGEB
[6]  
NOBLE G, 1966, SIAM J NUMER ANAL, V3, P582
[7]  
PENROSE R, 1966, P CAMBRIDGE PHILOS S, V62, P673
[8]  
POLINAC CD, UNPUBLISHED
[9]   EXPRESSIONS FOR GENERALIZED INVERSES OF A BORDERED MATRIX WITH APPLICATION TO THEORY OF CONSTRAINED LINEAR MODELS [J].
PRINGLE, RM ;
RAYNER, AA .
SIAM REVIEW, 1970, 12 (01) :107-&
[10]  
RAO CR, 1971, GENERALIZED INVERSE, P71