The real symplectic groups in quantum mechanics and optics

被引:201
作者
Arvind [3 ]
Dutta, B
Mukunda, N
Simon, R
机构
[1] INDIAN INST SCI,JAWAHARLAL NEHRU CTR ADV SCI RES,BANGALORE 560064,KARNATAKA,INDIA
[2] INDIAN INST SCI,CTR THEORET STUDIES,BANGALORE 560012,KARNATAKA,INDIA
[3] INDIAN INST SCI,DEPT PHYS,BANGALORE 560012,KARNATAKA,INDIA
[4] INST MATH SCI,MADRAS 600113,TAMIL NADU,INDIA
来源
PRAMANA-JOURNAL OF PHYSICS | 1995年 / 45卷 / 06期
关键词
symplectic groups; symplectic geometry; Huyghens kernel; uncertainty principle; multimode squeezing; Gaussian states;
D O I
10.1007/BF02848172
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a utilitarian review of the family of matrix groups Sp(2n, R), in a form suited to various applications both in optics and quantum mechanics. We contrast these groups and their geometry with the much more familiar Euclidean and unitary geometries. Both the properties of finite group elements and of the Lie algebra are studied, and special attention is paid to the so-called unitary metaplectic representation of Sp(2n, R). Global decomposition theorems, interesting subgroups and their generators are described. Turning to n-mode quantum systems, we define and study their variance mat;ices in general states, the implications of the Heisenberg uncertainty principles, and develop a U(n)-invariant squeezing criterion. The particular properties of Wigner distributions and Gaussian pure state wavefunctions under Sp(2n, R) action are delineated.
引用
收藏
页码:471 / 497
页数:27
相关论文
共 34 条
[1]  
ABRABAM R, 1978, F MECHANICS
[2]  
[Anonymous], 1978, MATH METHODS CLASSIC, DOI [DOI 10.1007/978-1-4757-1693-1, 10.1007/978-1-4757-1693-1]
[3]  
ARVIND B, 1995, PHYS REV A, V52, P1609
[4]  
ARVIND B, 1994, PHYS REV A, V50, P39
[5]   SQUEEZED STATES, PHOTON-NUMBER DISTRIBUTIONS, AND U(1) INVARIANCE [J].
DUTTA, B ;
MUKUNDA, N ;
SIMON, R ;
SUBRAMANIAM, A .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1993, 10 (02) :253-264
[6]  
DYSON FJ, 1966, SYMMETRY GROUPS NUCL
[7]  
Gilmore R., 1974, LIE GROUPS LIE ALGEB
[8]  
Guillemin V., 1984, SYMPLECTIC TECHNIQUE
[9]  
HAAKE F, 1984, COHERENCE COOPERATIO
[10]  
Helgason S., 1962, DIFFERENTIAL GEOMETR