IMPLICATIONS OF REACTION-DIFFUSION THEORY FOR THE DISINFECTION OF MICROBIAL BIOFILMS BY REACTIVE ANTIMICROBIAL AGENTS

被引:58
作者
STEWART, PS [1 ]
RAQUEPAS, JB [1 ]
机构
[1] MONTANA STATE UNIV,CTR BIOFILM ENGN,DEPT MATH SCI,BOZEMAN,MT 59717
关键词
D O I
10.1016/0009-2509(95)00143-S
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A theoretical framework was developed for analyzing the efficacy of antimicrobial agents when applied to microbial biofilms with which they react. Reaction-diffusion theory was adapted to investigate the potential for transport limitation of the overall rate of biofilm disinfection and the rate of antimicrobial penetration into the biofilm. Disinfection efficacy was investigated with simulations that assumed catalytic reaction of the antimicrobial agent with live and dead cells in a uniformly thick slab with simultaneous transformation of live to dead cells by an independent rate process (disinfection). The intrinsic rate of disinfection was assumed to follow first-order dependence on antimicrobial concentration. Zero- and first-order reaction kinetics of antimicrobial agent with biomass were analyzed. Microbial growth and external mass transfer resistance were neglected. Results show that antimicrobial efficacy, defined as the ratio of the observed rate of biofilm disinfection to the rate that would prevail in the absence of mass transport limitation, decreases sharply as the Thiele modulus exceeds one, The reduction in efficacy worsens when the antimicrobial dose is more concentrated or longer. A second case examined the penetration of an antimicrobial agent into a biofilm with which it reacts stoichiometrically, as would be expected with an oxidizing biocide such as chlorine or ozone. The antimicrobial agent eventually penetrates the biofilm by depleting the reactive biomass constituent, but the time scale for penetration can exceed the time scale for transient diffusion in the absence of reaction by orders of magnitude. These results provide a theoretical basis for explaining experimentally observed resistance of biofilms to chemical disinfectants.
引用
收藏
页码:3099 / 3104
页数:6
相关论文
共 12 条
[11]   BIOFILM ACCUMULATION MODEL THAT PREDICTS ANTIBIOTIC-RESISTANCE OF PSEUDOMONAS-AERUGINOSA BIOFILMS [J].
STEWART, PS .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1994, 38 (05) :1052-1058
[12]   PENETRATION OF BIOCIDES INTO BIOFILM [J].
TASHIRO, H ;
NUMAKURA, T ;
NISHIKAWA, S ;
MIYAJI, Y .
WATER SCIENCE AND TECHNOLOGY, 1991, 23 (7-9) :1395-1403