A POSITIVITY PROPERTY OF SOLUTIONS OF NONLINEAR DIFFUSION-EQUATIONS

被引:23
作者
BERTSCH, M
PELETIER, LA
机构
关键词
D O I
10.1016/0022-0396(84)90024-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:30 / 47
页数:18
相关论文
共 12 条
[1]   LARGE TIME BEHAVIOR OF SOLUTIONS OF NEUMANN BOUNDARY-VALUE PROBLEM FOR THE POROUS-MEDIUM EQUATION [J].
ALIKAKOS, ND ;
ROSTAMIAN, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :749-785
[2]   STABILIZATION OF SOLUTIONS OF A DEGENERATE NON-LINEAR DIFFUSION PROBLEM [J].
ARONSON, D ;
CRANDALL, MG ;
PELETIER, LA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1982, 6 (10) :1001-1022
[3]  
ARONSON DG, 1979, CR ACAD SCI A MATH, V288, P103
[4]  
BERTSCH M, 1982, J NONLINEAR ANAL, V6, P539
[5]  
BERTSCH M, ARCH RATIONAL MECH A
[6]   REGULARIZING EFFECTS FOR UT + A-PHI(U) = O IN L [J].
CRANDALL, M ;
PIERRE, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 45 (02) :194-212
[7]   REGULARIZING EFFECTS FOR UT=DELTA,PHI(U) [J].
CRANDALL, MG ;
PIERRE, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 274 (01) :159-168
[8]  
Dafermos C.M., 1978, PUBLICATIONS MATH RE, V40, P103
[9]   DIFFUSION OF BIOLOGICAL POPULATIONS [J].
GURTIN, ME ;
MACCAMY, RC .
MATHEMATICAL BIOSCIENCES, 1977, 33 (1-2) :35-49
[10]  
KALASHNIKOV AS, 1974, ZH VYCH MAT MAT FIZ, V14, P891