PERMEATION SELECTIVITY BY COMPETITION IN A DELAYED RECTIFIER POTASSIUM CHANNEL

被引:85
作者
KORN, SJ [1 ]
IKEDA, SR [1 ]
机构
[1] MED COLL GEORGIA, DEPT PHARMACOL & TOXICOL, AUGUSTA, GA 30912 USA
关键词
D O I
10.1126/science.7618108
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Permeation selectivity was studied in two human potassium channels, Kv2.1 and Kv1.5, expressed in a mouse cell line. With normal concentrations of potassium and sodium, both channels were highly selective for potassium. On removal of potassium, Kv2.1 displayed a large sodium conductance that was inhibited by low concentrations of potassium. The channel showed a competition mechanism of selectivity similar to that of calcium channels. In contrast, Kv1.5 displayed a negligible sodium conductance on removal of potassium. The observation that structurally similar potassium channels show different abilities to conduct sodium provides a basis for understanding the structural determinants of potassium channel selectivity.
引用
收藏
页码:410 / 412
页数:3
相关论文
共 18 条
[1]   NON-SELECTIVE CONDUCTANCE IN CALCIUM CHANNELS OF FROG-MUSCLE - CALCIUM SELECTIVITY IN A SINGLE-FILE PORE [J].
ALMERS, W ;
MCCLESKEY, EW .
JOURNAL OF PHYSIOLOGY-LONDON, 1984, 353 (AUG) :585-608
[2]   NEGATIVE CONDUCTANCE CAUSED BY ENTRY OF SODIUM AND CESIUM IONS INTO POTASSIUM CHANNELS OF SQUID AXONS [J].
BEZANILLA, F ;
ARMSTRONG, CM .
JOURNAL OF GENERAL PHYSIOLOGY, 1972, 60 (05) :588-+
[3]  
BLATZ AL, 1984, J GEN PHYSIOL, V84, P1, DOI 10.1085/jgp.84.1.1
[4]   PERMEATION OF NA+ THROUGH A DELAYED RECTIFIER K+ CHANNEL IN CHICK DORSAL-ROOT GANGLION NEURONS [J].
CALLAHAN, MJ ;
KORN, SJ .
JOURNAL OF GENERAL PHYSIOLOGY, 1994, 104 (04) :747-771
[5]   IMPROVED PATCH-CLAMP TECHNIQUES FOR HIGH-RESOLUTION CURRENT RECORDING FROM CELLS AND CELL-FREE MEMBRANE PATCHES [J].
HAMILL, OP ;
MARTY, A ;
NEHER, E ;
SAKMANN, B ;
SIGWORTH, FJ .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1981, 391 (02) :85-100
[6]   MUTATIONS IN THE K+ CHANNEL SIGNATURE SEQUENCE [J].
HEGINBOTHAM, L ;
LU, Z ;
ABRAMSON, T ;
MACKINNON, R .
BIOPHYSICAL JOURNAL, 1994, 66 (04) :1061-1067
[7]   CONDUCTION PROPERTIES OF THE CLONED SHAKER K+ CHANNEL [J].
HEGINBOTHAM, L ;
MACKINNON, R .
BIOPHYSICAL JOURNAL, 1993, 65 (05) :2089-2096
[8]   MECHANISM OF ION PERMEATION THROUGH CALCIUM CHANNELS [J].
HESS, P ;
TSIEN, RW .
NATURE, 1984, 309 (5967) :453-456
[10]   POTASSIUM CHANNELS AS MULTI-ION SINGLE-FILE PORES [J].
HILLE, B ;
SCHWARZ, W .
JOURNAL OF GENERAL PHYSIOLOGY, 1978, 72 (04) :409-442