ON PROPERTIES OF WEAKLY NONLINEAR-WAVE INTERACTIONS IN RESONATORS

被引:18
作者
KARTASHOVA, EA
机构
[1] P.P. Shirshov Institute for Oceanology, 117218 Moscow
来源
PHYSICA D | 1991年 / 54卷 / 1-2期
关键词
D O I
10.1016/0167-2789(91)90112-M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Weakly nonlinear wave interactions in resonators are considered. Qualitative differences from the continuous case are found: prevalence of waves not taking part in any interactions at all; dependence of the number of interacting waves on the basin form; existence of basins where interactions are totally impossible; locality of interactions in the spectral space. Consideration of equations defining the resonance surface in finite fields as well as methods of number theory are used. Some aspects of relations between the continuous and discrete cases are discussed.
引用
收藏
页码:125 / 134
页数:10
相关论文
共 10 条
[1]   INSTABILITY AND CONFINED CHAOS IN A NON-LINEAR DISPERSIVE WAVE SYSTEM [J].
CAPONI, EA ;
SAFFMAN, PG ;
YUEN, HC .
PHYSICS OF FLUIDS, 1982, 25 (12) :2159-2166
[2]  
CRAIK A. D. D., 1985, WAVE INTERACTIONS FL
[3]   PARTITIONING OF ENSEMBLES OF WEAKLY INTERACTING DISPERSING WAVES IN RESONATORS INTO DISJOINT CLASSES [J].
KARTASHOVA, EA .
PHYSICA D, 1990, 46 (01) :43-56
[4]  
KARTASHOVA EA, 1989, OKEANOLOGIYA+, V29, P533
[5]  
KARTASHOVA EA, 1990, IINSSIONWPL2 PREPR
[6]  
LANDAU E., 1909, HDB LEHRE VERTEILUNG, V2
[7]  
PEDLOSKY J, 1982, GEOPHYSICAL FLUID DY
[8]  
SILBERMAN I, 1954, J METEOROL, V11, P27, DOI 10.1175/1520-0469(1954)011<0027:PWITA>2.0.CO
[9]  
2
[10]  
VINOGRADOV IM, 1952, F NUMBER THEORY