QUASI-RANDOM 2-COLORINGS OF POINT SETS

被引:2
作者
BECK, J [1 ]
机构
[1] RUTGERS STATE UNIV, DEPT MATH, NEW BRUNSWICK, NJ 08903 USA
关键词
DISCREPANCY OF HYPERGRAPHS; PERMUTATION; MONOTONE SUBSEQUENCES;
D O I
10.1002/rsa.3240020304
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given an arbitrary set of N points on the plane, one can two-color the points red and blue in such a way that the difference of the numbers of red and blue points in any half-plane has absolute value less than N1/4(log N)4. This is essentially best possible.
引用
收藏
页码:289 / 302
页数:14
相关论文
共 11 条
[1]   GEOMETRIC METHODS IN THE STUDY OF IRREGULARITIES OF DISTRIBUTION [J].
ALEXANDER, R .
COMBINATORICA, 1990, 10 (02) :115-136
[2]  
ALEXANDER R, IN PRESS INVENT MATH
[3]   INTEGRAL APPROXIMATION SEQUENCES [J].
BECK, J ;
SPENCER, J .
MATHEMATICAL PROGRAMMING, 1984, 30 (01) :88-98
[5]   WELL-DISTRIBUTED 2-COLORINGS OF INTEGERS RELATIVE TO LONG ARITHMETIC PROGRESSIONS [J].
BECK, J ;
SPENCER, J .
ACTA ARITHMETICA, 1984, 43 (03) :287-294
[6]   BALANCED 2-COLORINGS OF FINITE SETS IN THE SQUARE-I [J].
BECK, J .
COMBINATORICA, 1981, 1 (04) :327-335
[7]   ROTH ESTIMATE OF THE DISCREPANCY OF INTEGER SEQUENCES IS NEARLY SHARP [J].
BECK, J .
COMBINATORICA, 1981, 1 (04) :319-325
[8]  
BECK J, 1988, DISCRETE MATH, V73, P13
[9]  
Erdos P., 1935, COMPOS MATH, V2, P463
[10]   BALANCING VECTORS IN THE MAX NORM [J].
SPENCER, J .
COMBINATORICA, 1986, 6 (01) :55-65