3-DIMENSIONAL MULTIMODE SIMULATIONS OF THE ABLATIVE RAYLEIGH-TAYLOR INSTABILITY

被引:38
作者
DAHLBURG, JP
FYFE, DE
GARDNER, JH
HAAN, SW
BODNER, SE
DOOLEN, GD
机构
[1] LAWRENCE LIVERMORE NATL LAB, LIVERMORE, CA 94550 USA
[2] USN, RES LAB, DIV PLASMA PHYS, WASHINGTON, DC 20375 USA
[3] LOS ALAMOS NATL LAB, LOS ALAMOS, NM 87545 USA
关键词
D O I
10.1063/1.871270
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Multimode simulations of the evolution of the laser-driven, ablative Rayleigh-Taylor instability on planar, plastic targets are performed in three dimensions, with FAST3D_CM. The initial mass density target perturbations are random, with a power law dependence of k-2, a RMS surface finish of 0.1 μm, and perturbation wave numbers ranging from 2π/dmax to √2×(12π/dmax), for dmax=128 μm. At early nonlinear times, the perturbations grow to tile the target with approximately hexagonal bubbles that are of the shortest, initially seeded wavelengths not stabilized by density gradients. This tiling occurs on a time scale that is comparable to the eddy turnover time of the dominant bubble wavelength. When the target thickness is large compared to the dominant, short wavelengths, the bubbles continue to burn into the target and to evolve to progressively longer spatial scales. Predictions from second-order mode coupling and saturation models are found to be consistent with the simulation results.
引用
收藏
页码:2453 / 2459
页数:7
相关论文
共 23 条
[1]   SCALE-INVARIANT MIXING RATES OF HYDRODYNAMICALLY UNSTABLE INTERFACES [J].
ALON, U ;
HECHT, J ;
MUKAMEL, D ;
SHVARTS, D .
PHYSICAL REVIEW LETTERS, 1994, 72 (18) :2867-2870
[2]   SCALE-INVARIANT REGIME IN RAYLEIGH-TAYLOR BUBBLE-FRONT DYNAMICS [J].
ALON, U ;
SHVARTS, D ;
MUKAMEL, D .
PHYSICAL REVIEW E, 1993, 48 (02) :1008-1014
[3]   FLUX-CORRECTED TRANSPORT .1. SHASTA, A FLUID TRANSPORT ALGORITHM THAT WORKS [J].
BORIS, JP ;
BOOK, DL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1973, 11 (01) :38-69
[4]  
BOZKUS Z, 1992, FRONTIERS 92 : THE FOURTH SYMPOSIUM ON THE FRONTIERS OF MASSIVELY PARALLEL COMPUTATION, P100, DOI 10.1109/FMPC.1992.234900
[5]   INDIRECTLY DRIVEN, HIGH CONVERGENCE INERTIAL CONFINEMENT FUSION IMPLOSIONS [J].
CABLE, MD ;
HATCHETT, SP ;
CAIRD, JA ;
KILKENNY, JD ;
KORNBLUM, HN ;
LANE, SM ;
LAUMANN, C ;
LERCHE, RA ;
MURPHY, TJ ;
MURRAY, J ;
NELSON, MB ;
PHILLION, DW ;
POWELL, H ;
RESS, DB .
PHYSICAL REVIEW LETTERS, 1994, 73 (17) :2316-2319
[6]   INVERSE CASCADES IN 2-DIMENSIONAL COMPRESSIBLE TURBULENCE .1. INCOMPRESSIBLE FORCING AT LOW MACH NUMBER [J].
DAHLBURG, JP ;
DAHLBURG, RB ;
GARDNER, JH ;
PICONE, JM .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1990, 2 (08) :1481-1486
[7]   THE EFFECT OF SHAPE IN THE 3-DIMENSIONAL ABLATIVE RAYLEIGH-TAYLOR INSTABILITY .1. SINGLE-MODE PERTURBATIONS [J].
DAHLBURG, JP ;
GARDNER, JH ;
DOOLEN, GD ;
HAAN, SW .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1993, 5 (02) :571-584
[8]  
DAHLBURG JP, 1990, B AM PHYS SOC, V35, P1969
[9]   HYDRODYNAMIC SIMULATIONS OF LIGHT-ION BEAM-MATTER INTERACTIONS - ABLATIVE ACCELERATION OF THIN FOILS [J].
DEVORE, CR ;
GARDNER, JH ;
BORIS, JP ;
MOSHER, D .
LASER AND PARTICLE BEAMS, 1984, 2 (MAY) :227-243
[10]   ANALYSIS OF WEAKLY NONLINEAR 3-DIMENSIONAL RAYLEIGH-TAYLOR INSTABILITY GROWTH [J].
DUNNING, MJ ;
HAAN, SW .
PHYSICS OF PLASMAS, 1995, 2 (05) :1669-1681