Groups with all subgroups normal-by-finite

被引:46
作者
Buckley, JT
Lennox, JC
Neumann, BH
Smith, H
Wiegold, J
机构
[1] AUSTRALIAN NATL UNIV,SCH MAT SCI,CANBERRA,ACT,AUSTRALIA
[2] UNIV WALES COLL CARDIFF,SCH MATH,CARDIFF CF1 1XL,S GLAM,WALES
[3] BUCKNELL UNIV,DEPT MATH,LEWISBURG,PA 17837
来源
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS | 1995年 / 59卷
关键词
D O I
10.1017/S1446788700037289
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A group G has all of its subgroups normal-by-finite if H/core(G)(H) is finite for all subgroups H of G. These groups can be quite complicated in general, as is seen from the so-called Tarski groups. However, the locally finite groups of this type are shown to be abelian-by-finite; and they are then boundedly core-finite, that is to say, there is a bound depending on G only for the indices \H : core(G)(H)\.
引用
收藏
页码:384 / 398
页数:15
相关论文
共 11 条
[1]   NILPOTENT EXTENSIONS OF ABELIAN PARA-GROUPS [J].
BUCKLEY, J ;
WIEGOLD, J .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1986, 38 (05) :1025-1052
[2]  
Fuchs L., 1970, INFINITE ABELIAN GRO, V1
[3]  
Hall P., 1964, J LOND MATH SOC, V39, P235
[4]  
NEUMANN BH, 1954, PUBL MATH-DEBRECEN, V3, P227
[5]  
NEUMANN BH, 1971, 1970 ACT C INT MATH, V1, P293
[6]  
NEUMANN BH, 1955, MATH Z, V63, DOI DOI 10.1007/BF01187925
[7]  
Olshanskii A. Yu., 1989, GEOMETRY DEFINING RE
[8]  
Robinson D. J. F., 1982, COURSE THEORY GROUPS
[9]  
Robinson D.J.S., 1976, B LOND MATH SOC, V8, P113
[10]  
TOMKINSON MJ, 1984, FC GROUPS