RANDOM VERSUS DETERMINISTIC 2-DIMENSIONAL TRAFFIC FLOW MODELS

被引:24
作者
MARTINEZ, FC [1 ]
CUESTA, JA [1 ]
MOLERA, JM [1 ]
BRITO, R [1 ]
机构
[1] UNIV COMPLUTENSE, FAC CIENCIAS FIS, E-28040 MADRID, SPAIN
关键词
D O I
10.1103/PhysRevE.51.R835
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Deterministic and stochastic cellular automata models available to study two-dimensional traffic flow are compared in this paper. It is shown that a connection between them can be made only when the infinite time and infinite system limits are taken in the appropriate order. We also stress the crucial importance of the choice of boundary conditions in the deterministic model to obtain bulk properties. © 1995 The American Physical Society.
引用
收藏
页码:R835 / R838
页数:4
相关论文
共 6 条
[1]   SELF-ORGANIZATION AND A DYNAMIC TRANSITION IN TRAFFIC-FLOW MODELS [J].
BIHAM, O ;
MIDDLETON, AA ;
LEVINE, D .
PHYSICAL REVIEW A, 1992, 46 (10) :R6124-R6127
[2]   PHASE-TRANSITIONS IN 2-DIMENSIONAL TRAFFIC-FLOW MODELS [J].
CUESTA, JA ;
MARTINEZ, FC ;
MOLERA, JM ;
SANCHEZ, A .
PHYSICAL REVIEW E, 1993, 48 (06) :R4175-R4178
[3]   THEORETICAL APPROACH TO 2-DIMENSIONAL TRAFFIC FLOW MODELS [J].
MOLERA, JM ;
MARTINEZ, FC ;
CUESTA, JA ;
BRITO, R .
PHYSICAL REVIEW E, 1995, 51 (01) :175-187
[4]   DETERMINISTIC MODELS FOR TRAFFIC JAMS [J].
NAGEL, K ;
HERRMANN, HJ .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1993, 199 (02) :254-269
[5]  
NAGEL K, 1992, J PHYS I, V2, P2221, DOI 10.1051/jp1:1992277
[6]   CELLULAR-AUTOMATON MODELS AND TRAFFIC FLOW [J].
SCHADSCHNEIDER, A ;
SCHRECKENBERG, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (15) :L679-L683