Evaluation of pattern recognition and feature extraction methods in ADHD prediction

被引:57
作者
Sato, Joao Ricardo [1 ,2 ,5 ]
Hoexter, Marcelo Queiroz [2 ,5 ]
Fujita, Andre [3 ]
Rohde, Luis Augusto [4 ,5 ]
机构
[1] Univ Fed ABC, Ctr Math Computat & Cognit, Rua Santa Adelia 166, BR-09210170 Santo Andre, SP, Brazil
[2] Univ Fed Sao Paulo, Dept Psychiat, Lab Interdisciplinar Neurociencias Clin, Sao Paulo, Brazil
[3] Univ Sao Paulo, Dept Comp Sci, Sao Paulo, Brazil
[4] Hosp Clin Porto Alegre, Child & Adolescent Psychiat Div, Attent Deficit Hyperact Disorder Outpatient Progr, Porto Alegre, RS, Brazil
[5] Inst Nacl Psiquiatria Desenvolvimento, Sao Paulo, Brazil
来源
FRONTIERS IN SYSTEMS NEUROSCIENCE | 2012年 / 6卷
基金
巴西圣保罗研究基金会;
关键词
ADHD; machine learning; SVM; classification; diagnosis; prediction; features;
D O I
10.3389/fnsys.2012.00068
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Attention Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder, being one of the most prevalent psychiatric disorders in childhood. The neural substrates associated with this condition, both from structural and functional perspectives, are not yet well established. Recent studies have highlighted the relevance of neuroimaging not only to provide a more solid understanding about the disorder but also for possible clinical support. The ADHD-200 Consortium organized the ADHD-200 global competition making publicly available, hundreds of structural magnetic resonance imaging (MRI) and functional MRI (fMRI) datasets of both ADHD patients and typically developing (TD) controls for research use. In the current study, we evaluate the predictive power of a set of three different feature extraction methods and 10 different pattern recognition methods. The features tested were regional homogeneity (ReHo), amplitude of low frequency fluctuations (ALFF), and independent components analysis maps (resting state networks; RSN). Our findings suggest that the combination ALFF+ReHo maps contain relevant information to discriminate ADHD patients from TD controls, but with limited accuracy. All classifiers provided almost the same performance in this case. In addition, the combination ALFF+ReHo+RSN was relevant in combined vs. inattentive ADHD classification, achieving a score accuracy of 67%. In this latter case, the performances of the classifiers were not equivalent and L2-regularized logistic regression (both in primal and dual space) provided the most accurate predictions. The analysis of brain regions containing most discriminative information suggested that in both classifications (ADHD vs. TD controls and combined vs. inattentive), the relevant information is not confined only to a small set of regions but it is spatially distributed across the whole brain.
引用
收藏
页码:1 / 25
页数:14
相关论文
共 42 条
[1]  
Alpaydin E., 2010, INTRO MACHINE LEARNI, V2nd
[2]  
American Psychiatric Association, 2013, DIAGN STAT MAN MENT, DOI DOI 10.1176/APPI.BOOKS.9780890425596
[3]   Human brain networks in health and disease [J].
Bassett, Danielle S. ;
Bullmore, Edward T. .
CURRENT OPINION IN NEUROLOGY, 2009, 22 (04) :340-347
[4]   Toward discovery science of human brain function [J].
Biswal, Bharat B. ;
Mennes, Maarten ;
Zuo, Xi-Nian ;
Gohel, Suril ;
Kelly, Clare ;
Smith, Steve M. ;
Beckmann, Christian F. ;
Adelstein, Jonathan S. ;
Buckner, Randy L. ;
Colcombe, Stan ;
Dogonowski, Anne-Marie ;
Ernst, Monique ;
Fair, Damien ;
Hampson, Michelle ;
Hoptman, Matthew J. ;
Hyde, James S. ;
Kiviniemi, Vesa J. ;
Kotter, Rolf ;
Li, Shi-Jiang ;
Lin, Ching-Po ;
Lowe, Mark J. ;
Mackay, Clare ;
Madden, David J. ;
Madsen, Kristoffer H. ;
Margulies, Daniel S. ;
Mayberg, Helen S. ;
McMahon, Katie ;
Monk, Christopher S. ;
Mostofsky, Stewart H. ;
Nagel, Bonnie J. ;
Pekar, James J. ;
Peltier, Scott J. ;
Petersen, Steven E. ;
Riedl, Valentin ;
Rombouts, Serge A. R. B. ;
Rypma, Bart ;
Schlaggar, Bradley L. ;
Schmidt, Sein ;
Seidler, Rachael D. ;
Siegle, Greg J. ;
Sorg, Christian ;
Teng, Gao-Jun ;
Veijola, Juha ;
Villringer, Arno ;
Walter, Martin ;
Wang, Lihong ;
Weng, Xu-Chu ;
Whitfield-Gabrieli, Susan ;
Williamson, Peter ;
Windischberger, Christian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) :4734-4739
[5]   Bagging predictors [J].
Breiman, L .
MACHINE LEARNING, 1996, 24 (02) :123-140
[6]   Cingulate-precuneus interactions: A new locus of dysfunction in adult attention-deficit/hyperactivity disorder [J].
Castellanos, F. Xavier ;
Margulies, Daniel S. ;
Kelly, Clare ;
Uddin, Lucina Q. ;
Ghaffari, Manely ;
Kirsch, Andrew ;
Shaw, David ;
Shehzad, Zarrar ;
Di Martino, Adriana ;
Biswal, Bharat ;
Sonuga-Barke, Edmund J. S. ;
Rotrosen, John ;
Adler, Lenard A. ;
Milham, Michael P. .
BIOLOGICAL PSYCHIATRY, 2008, 63 (03) :332-337
[7]  
Castellanos FX, 1996, ARCH GEN PSYCHIAT, V53, P607
[8]   A whole brain fMRI atlas generated via spatially constrained spectral clustering [J].
Craddock, R. Cameron ;
James, G. Andrew ;
Holtzheimer, Paul E., III ;
Hu, Xiaoping P. ;
Mayberg, Helen S. .
HUMAN BRAIN MAPPING, 2012, 33 (08) :1914-1928
[9]   Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns [J].
De Martino, Federico ;
Valente, Giancarlo ;
Staeren, Noel ;
Ashburner, John ;
Goebel, Rainer ;
Formisano, Elia .
NEUROIMAGE, 2008, 43 (01) :44-58
[10]  
Development Core Team, 2011, R LANG ENV STAT COMP