PATH INTEGRATION ON SPHERES - HAMILTONIAN OPERATORS FROM THE FADDEEV-SENJANOVIC PATH INTEGRAL FORMULA

被引:25
作者
FUKUTAKA, H
KASHIWA, T
机构
关键词
D O I
10.1016/0003-4916(87)90004-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:301 / 329
页数:29
相关论文
共 30 条
[1]  
Abers E. S., 1973, Physics Reports. Physics Letters Section C, V9C, P1, DOI 10.1016/0370-1573(73)90027-6
[2]  
BATEMAN H, 1954, TABLES INTEGRAL TRAN, V2, P31
[3]  
Dirac P.A.M., 1964, LECT QUANTUM MECH
[4]   WHEN IS SUM OVER CLASSICAL PATHS EXACT [J].
DOWKER, JS .
JOURNAL OF PHYSICS PART A GENERAL, 1970, 3 (05) :451-&
[5]   REALIZATION OF THE SCHWINGER TERM IN THE GAUSS LAW AND THE POSSIBILITY OF CORRECT QUANTIZATION OF A THEORY WITH ANOMALIES [J].
FADDEEV, LD ;
SHATASHVILI, SL .
PHYSICS LETTERS B, 1986, 167 (02) :225-228
[6]  
FADDEEV LD, 1970, THEOR MATH PHYS, V1, P1
[7]  
Feynman R., 1965, QUANTUM MECH PATH IN
[8]   HAMILTONIAN PATH-INTEGRAL METHODS [J].
GARROD, C .
REVIEWS OF MODERN PHYSICS, 1966, 38 (03) :483-&
[9]   POINT CANONICAL TRANSFORMATIONS IN PATH INTEGRAL [J].
GERVAIS, JL ;
JEVICKI, A .
NUCLEAR PHYSICS B, 1976, 110 (01) :93-112
[10]  
GLIMM J, 1981, QUANTUM PHYSICS, pCH3