A GROWTH ALGORITHM FOR NEURAL NETWORK DECISION TREES

被引:33
作者
GOLEA, M
MARCHAND, M
机构
[1] Department of Physics, University of Ottawa
来源
EUROPHYSICS LETTERS | 1990年 / 12卷 / 03期
关键词
D O I
10.1209/0295-5075/12/3/003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper explores the application of neural network principles to the construction of decision trees from examples. We consider the problem of constructing a tree of perceptrons able to execute a given but arbitrary Boolean function defined on N, input bits. We apply a sequential (from one tree level to the next) and parallel (for neurons in the same level) learning procedure to add hidden units until the task in hand is performed. At each step, we use a perceptron-type algorithm over a suitable defined input space to minimize a classification error. The internal representations obtained in this way are linearly separable. Preliminary results of this algorithm are presented. © 1990 IOP Publishing Ltd.
引用
收藏
页码:205 / 210
页数:6
相关论文
共 14 条
[1]  
BLUM A, 1988, 1ST P WORKSH COMP LE, P9
[2]  
Breiman L, 2017, CLASSIFICATION REGRE, P368, DOI 10.1201/9781315139470
[3]  
Denker J., 1987, Complex Systems, V1, P877
[4]  
GALLANT SI, 1986, 8 IEEE P C PATT REC
[5]  
Hyafil L., 1976, Information Processing Letters, V5, P15, DOI 10.1016/0020-0190(76)90095-8
[6]  
JUDD S, 1987, 1ST P IEEE C NEUR NE, V2, P685
[7]   SELF-ORGANIZATION IN A PERCEPTUAL NETWORK [J].
LINSKER, R .
COMPUTER, 1988, 21 (03) :105-117
[8]   A CONVERGENCE THEOREM FOR SEQUENTIAL LEARNING IN 2-LAYER PERCEPTRONS [J].
MARCHAND, M ;
GOLEA, M ;
RUJAN, P .
EUROPHYSICS LETTERS, 1990, 11 (06) :487-492
[9]   LEARNING IN FEEDFORWARD LAYERED NETWORKS - THE TILING ALGORITHM [J].
MEZARD, M ;
NADAL, JP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (12) :2191-2203
[10]  
Minsky ML, 1988, PERCEPTRONS