THE EXISTENCE OF GENERALIZED ISOTHERMAL COORDINATES FOR HIGHER DIMENSIONAL RIEMANNIAN-MANIFOLDS

被引:27
作者
CAO, J [1 ]
机构
[1] UNIV PENN,DEPT MATH,PHILADELPHIA,PA 19104
关键词
D O I
10.2307/2001747
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We shall show that, for any given point p on a Riemannian manifold (M, g0), there is a pointwise conformal metric g = PHI-g0 in which the g-geodesic sphere centered at p with radius r has constant mean curvature l/r for all sufficiently small r. Furthermore, the exponential map of g at p is a measure preserving map in a small ball around p.
引用
收藏
页码:901 / 920
页数:20
相关论文
共 12 条
[1]  
Aubin T., 1982, NONLINEAR ANAL MANIF, V252
[2]  
BERGER M, 1971, SPECTR UNE VARIETE R
[3]  
Besse A, 1986, EINSTEIN MANIFOLDS
[4]   MINIMAL-SURFACES WITH ISOLATED SINGULARITIES [J].
CAFFARELLI, L ;
HARDT, R ;
SIMON, L .
MANUSCRIPTA MATHEMATICA, 1984, 48 (1-3) :1-18
[5]  
DETURCK D, 1985, INVENT MATH, V65, P197
[6]  
DETURCK DM, 1981, ANN SCI ECOLE NORM S, V14, P249
[7]  
ESCHENBURG J. -H, 1984, ANN GLOB ANAL GEOM, V2, P141
[8]  
Gilbarg D., 1983, ELLIPTIC PARTIAL DIF
[9]  
Golubitsky M, 1973, STABLE MAPPINGS THEI
[10]  
GRAY A, 1979, ACTA MATH, V142, P158