THE APPROXIMATION-THEORY FOR THE P-VERSION OF THE FINITE-ELEMENT METHOD

被引:39
作者
DORR, MR
机构
[1] Lawrence Livermore Natl Lab,, Livermore, CA, USA, Lawrence Livermore Natl Lab, Livermore, CA, USA
关键词
D O I
10.1137/0721073
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this article is to present the approximation theory underlying the p-version of the finite element method. By exploiting the relationship between polynomial approximation and certain weighted Sobolev spaces, which are identified as the domain of positive real powers of the Legendre operator, this one-dimensional result is generalized via a tensor product construction to yield a nonconforming piecewise polynomial approximation result in the usual unweighted Sobolev spaces on triangulated domains of R'. It is then shown that essentially the same result holds for approximation by conforming piecewise polynomials provided that the function being approximated possesses the same degree of conformality across the common boundaries of adjacent simplices and the same homogeneous boundary conditions. Inverse results are given for the special case of approximation in L//2.
引用
收藏
页码:1180 / 1207
页数:28
相关论文
共 17 条
[1]  
ABRAMOWITZ M, 1967, NBS APPLIED MATH SER, V55
[2]   ERROR-ESTIMATES FOR THE COMBINED H-VERSION AND P-VERSION OF THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
DORR, MR .
NUMERISCHE MATHEMATIK, 1981, 37 (02) :257-277
[3]   THE P-VERSION OF THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
SZABO, BA ;
KATZ, IN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (03) :515-545
[4]  
BABUSKA I, 1972, MATH FDN FINITE ELEM, P3
[5]  
BELLMAN R., 1944, B AM MATH SOC, V50, P734
[6]  
Bergh J., 1976, GRUNDLEHREN MATH WIS
[7]  
CANUTO C, 1982, MATH COMPUT, V38, P67, DOI 10.1090/S0025-5718-1982-0637287-3
[8]  
Ciarlet PG., 1978, FINITE ELEMENT METHO
[9]  
Hardy G. H., 1934, INEQUALITIES
[10]  
Lions J. L., 1972, NONHOMOGENEOUS BOUND