FAST MULTIPOLE METHOD SOLUTION USING PARAMETRIC GEOMETRY

被引:92
作者
SONG, JM
CHEW, WC
机构
[1] Electromagnetics Laboratory, Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois
关键词
FAST MULTIPOLE; FAST ALGORITHM; WAVE SCATTERING; INTEGRAL EQUATION; METHOD OF MOMENTS;
D O I
10.1002/mop.4650071612
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The fast multipole method is used to solve the electromagnetic scattering from three-dimensional conducting bodies of arbitrary shape. The electric field integral equation is discretized by the method of moments. Instead of directly computing the matrix-vector multiplication, which needs N2 multiplications, this approach reduces the complexity to O(N1.5). (C) John Wiley & Sons, Inc.
引用
收藏
页码:760 / 765
页数:6
相关论文
共 15 条
[1]  
Rokhlin V., Rapid Solution of Integral Equations of Scattering Theory in Two Dimensions, J. Comput. Phys., 86, 2, pp. 414-439, (1990)
[2]  
Engheta N., Murphy W.D., Rokhlin V., Vassiliou M.S., The Fast Multipole Method (FMM) for Electromagnetic Scattering Problems, IEEE Trans. Antennas Propagat., 40 AP, 6, pp. 634-641, (1992)
[3]  
Lu C.C., Chew W.C., A Fast Algorithm for Solving Hybrid Integral Equation, IEE Proc. Pt. H, 140, 6, pp. 455-460, (1993)
[4]  
Coifman R., Rokhlin V., Wandzura S., The Fast Multipole Method for the Wave Equation: A Pedestrian Prescription, IEEE Antennas Propagat. Mag., 35, 3, pp. 7-12, (1993)
[5]  
Abromowitz M., Stegun I.A., Handbook of Mathematical Functions, (1972)
[6]  
Wagner R.L., Chew W.C.
[7]  
Sancer M.I., McClary R.L., Glover K.J., Electromagnetic Computation Using Parametric Geometry, Electromagnetics, 10, 1, pp. 85-103, (1990)
[8]  
Wilkes D.L., Cha C.-C., pp. 1512-1515, (1991)
[9]  
Wandzura S., Electric Current Basis Functions for Curved Surfaces, Electromagn., 12, pp. 77-91, (1992)
[10]  
Valle L., Rivas F., Catedra M.F., Combining the Moment Method with Geometrical Modeling by NURBS Surfaces and Bézier Patches, IEEE Transactions on Antennas and Propagation, 42 AP, 3, pp. 373-381, (1994)