Recently, a topological proof of the spin-statistics theorem has been proposed for a system of point particles. It does not require relativity or field theory, but assumes the existence of antiparticles. We extend this proof to a system of string loops in three space dimensions and show that by assuming the existence of antistring loops, one can prove a spin-statistics theorem for these string loops. According to this theorem, all unparametrized strings (such as flux tubes in superconductors and cosmic strings) should be quantized as bosons. Also, as in the point particle case, we find that the theorem excludes non-Abelian statistics.