ON THE CLASSIFICATION OF QUANTUM W-ALGEBRAS

被引:55
作者
BOWCOCK, P [1 ]
WATTS, GMT [1 ]
机构
[1] UNIV DURHAM,DEPT MATH SCI,DURHAM DH1 3LE,ENGLAND
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(92)90590-8
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this paper we consider the structure of general quantum W-algebras. We introduce the notions of deformability, positive-definiteness, and reductivity of a W-algebra. We show that one can associate a reductive finite Lie algebra to each reductive W-algebra. The finite Lie algebra is also endowed with a preferred sl(2) subalgebra, which gives the conformal weights of the W-algebra. We extend this to cover W-algebras containing both bosonic and fermionic fields, and illustrate our ideas with the Poisson bracket algebras of generalised Drinfeld-Sokolov hamiltonian systems. We then discuss the possibilities of classifying deformable W-algebras which fall outside this class in the context of automorphisms of Lie algebras. In conclusion we list the cases in which the W-algebra has no weight-one fields, and further, those in which it has only one weight-two field.
引用
收藏
页码:63 / 95
页数:33
相关论文
共 39 条
[1]   PATH INTEGRAL QUANTIZATION OF THE COADJOINT ORBITS OF THE VIRASORO GROUP AND 2-D GRAVITY [J].
ALEKSEEV, A ;
SHATASHVILI, S .
NUCLEAR PHYSICS B, 1989, 323 (03) :719-733
[2]  
[Anonymous], [No title captured]
[3]  
[Anonymous], 1978, MATH METHODS CLASSIC, DOI [DOI 10.1007/978-1-4757-1693-1, 10.1007/978-1-4757-1693-1]
[4]   EXTENSIONS OF THE VIRASORO ALGEBRA CONSTRUCTED FROM KAC-MOODY ALGEBRAS USING HIGHER-ORDER CASIMIR INVARIANTS [J].
BAIS, FA ;
BOUWKNEGT, P ;
SURRIDGE, M ;
SCHOUTENS, K .
NUCLEAR PHYSICS B, 1988, 304 (02) :348-370
[5]   COVARIANTLY COUPLED CHIRAL ALGEBRAS [J].
BAIS, FA ;
TJIN, T ;
VANDRIEL, P .
NUCLEAR PHYSICS B, 1991, 357 (2-3) :632-654
[6]   COSET CONSTRUCTION FOR EXTENDED VIRASORO ALGEBRAS [J].
BAIS, FA ;
BOUWKNEGT, P ;
SURRIDGE, M ;
SCHOUTENS, K .
NUCLEAR PHYSICS B, 1988, 304 (02) :371-391
[7]   TODA THEORY AND W-ALGEBRA FROM A GAUGED WZNW POINT-OF-VIEW [J].
BALOG, J ;
FEHER, L ;
ORAIFEARTAIGH, L ;
FORGACS, P ;
WIPF, A .
ANNALS OF PHYSICS, 1990, 203 (01) :76-136
[8]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[9]   CONFORMAL FIELD-THEORIES VIA HAMILTONIAN REDUCTION [J].
BERSHADSKY, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 139 (01) :71-82
[10]  
BERSHADSKY M, 1989, COMMUN MATH PHYS, V126, P429