INCREASED RESISTANCE TO OXIDATIVE STRESS IN TRANSGENIC PLANTS THAT OVEREXPRESS CHLOROPLASTIC CU/ZN SUPEROXIDE-DISMUTASE

被引:342
作者
GUPTA, AS
HEINEN, JL
HOLADAY, AS
BURKE, JJ
ALLEN, RD
机构
[1] TEXAS TECH UNIV,DEPT BIOL SCI & AGRON,LUBBOCK,TX 79409
[2] USDA ARS,CROPPING SYST RES LAB,LUBBOCK,TX 79401
[3] TEXAS TECH UNIV,DEPT HORT & ENTOMOL,LUBBOCK,TX 79409
关键词
TOBACCO; PHOTOINHIBITION; METHYL VIOLOGEN;
D O I
10.1073/pnas.90.4.1629
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transgenic tobacco plants that express a chimeric gene that encodes chloroplast-localized Cu/Zn superoxide dismutase (SOD) from pea have been developed. To investigate whether increased expression of chloroplast-targeted SOD could alter the resistance of photosynthesis to environmental stress, these plants were subjected to chilling temperatures and moderate (500 mumol of quanta per m2 per s) or high (1500 mumol of quanta per m2 per s) light intensity. During exposure to moderate stress, transgenic SOD plants retained rates of photosynthesis almost-equal-to 20% higher than untransformed tobacco plants, implicating active oxygen species in the reduction of photosynthesis during chilling. Unlike untransformed plants, transgenic SOD plants were capable of maintaining nearly 90% of their photosynthetic capacity (determined by their photosynthetic rates at 25-degrees-C) following exposure to chilling at high light intensity for 4 hr. These plants also showed reduced levels of light-mediated cellular damage from the superoxide-generating herbicide methyl viologen. These results demonstrate that SOD is a critical component of the active-oxygen-scavenging system of plant chloroplasts and indicate that modification of SOD expression in transgenic plants can improve plant stress tolerance.
引用
收藏
页码:1629 / 1633
页数:5
相关论文
共 26 条
[1]   LETHAL HYDROXYL RADICAL PRODUCTION IN PARAQUAT-TREATED PLANTS [J].
BABBS, CF ;
PHAM, JA ;
COOLBAUGH, RC .
PLANT PHYSIOLOGY, 1989, 90 (04) :1267-1270
[2]   ASPECTS OF THE STRUCTURE, FUNCTION, AND APPLICATIONS OF SUPEROXIDE-DISMUTASE [J].
BANNISTER, JV ;
BANNISTER, WH ;
ROTILIO, G .
CRC CRITICAL REVIEWS IN BIOCHEMISTRY, 1987, 22 (02) :111-180
[3]   SUPEROXIDE DISMUTASE - IMPROVED ASSAYS AND AN ASSAY APPLICABLE TO ACRYLAMIDE GELS [J].
BEAUCHAM.C ;
FRIDOVIC.I .
ANALYTICAL BIOCHEMISTRY, 1971, 44 (01) :276-&
[4]   BINARY AGROBACTERIUM VECTORS FOR PLANT TRANSFORMATION [J].
BEVAN, M .
NUCLEIC ACIDS RESEARCH, 1984, 12 (22) :8711-8721
[5]  
BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911
[6]   SUPEROXIDE-DISMUTASE AND STRESS TOLERANCE [J].
BOWLER, C ;
VANMONTAGU, M ;
INZE, D .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1992, 43 :83-116
[7]   MANGANESE SUPEROXIDE-DISMUTASE CAN REDUCE CELLULAR-DAMAGE MEDIATED BY OXYGEN RADICALS IN TRANSGENIC PLANTS [J].
BOWLER, C ;
SLOOTEN, L ;
VANDENBRANDEN, S ;
DERYCKE, R ;
BOTTERMAN, J ;
SYBESMA, C ;
VANMONTAGU, M ;
INZE, D .
EMBO JOURNAL, 1991, 10 (07) :1723-1732
[8]   BIOCHEMISTRY OF OXYGEN-TOXICITY [J].
CADENAS, E .
ANNUAL REVIEW OF BIOCHEMISTRY, 1989, 58 :79-110
[9]   ISOENZYMES OF CUPROZINC SUPEROXIDE-DISMUTASE FROM PISUM-SATIVUM [J].
DUKE, MV ;
SALIN, ML .
PHYTOCHEMISTRY, 1983, 22 (11) :2369-2373
[10]   OVERPRODUCTION OF HUMAN CU/ZN-SUPEROXIDE DISMUTASE IN TRANSFECTED CELLS - EXTENUATION OF PARAQUAT-MEDIATED CYTOTOXICITY AND ENHANCEMENT OF LIPID-PEROXIDATION [J].
ELROYSTEIN, O ;
BERNSTEIN, Y ;
GRONER, Y .
EMBO JOURNAL, 1986, 5 (03) :615-622